• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Flip
  • Tanedo
  • USA

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Laura
  • Gladstone
  • University of Wisconsin, Madison
  • USA

Latest Posts

  • Richard
  • Ruiz
  • Univ. of Pittsburgh
  • U.S.A.

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Michael
  • DuVernois
  • Wisconsin IceCube Particle Astrophysics Center
  • USA

Latest Posts

  • Jim
  • Rohlf
  • USA

Latest Posts

  • Emily
  • Thompson
  • Switzerland

Latest Posts

  • Ken
  • Bloom
  • USA

Latest Posts

Katherine Copic | USLHC | USA

View Blog | Read Bio

What is it that you do, exactly?

During the holidays, many of my colleagues working at CERN and I went home, where we encountered aunts and grandpas, parents and friends, all with the the same questions to be answered: What it is that you do? Is that the black hole thing? OK, right, physics… but what is your actual JOB?

While I was in the US, I went to visit a high school class near Rochester, NY. One of the most important things I thought I could explain to the students there was how researchers at CERN become researchers at CERN. That’s something I didn’t understand at all when I was choosing a career path, and it helps explain a little about what it is that we do everyday.

A disclaimer: People take all kinds of paths to become researchers at CERN, but there is one standard path, and that’s what I’ll describe. There are, of course, many variations on this theme — my own path wasn’t exactly what I’ll describe here. I’ll also talk mostly about the way it works in the US — it is similar in many other countries, but with subtle differences in years, titles, etc.

Here, then, is my guide for families, friends, and particle physics enthusiastics to what it is that many of us do.

Step 1. College, AKA “Undergrad.” This one is pretty well understood. Most physicists working at CERN went through four (or more…) years of college, with a physics degree or some other related science degree. In the four years of classes, students should learn the basic physics and math tools that they’ll need. In addition to taking classes, many people also start to do research with a professor at their university. This professor is someone who does research in addition to teaching. He or she is actively engaged in answering some question that no one has answered before, working in a lab on campus, or working as part of a big collaboration like the ones we have at CERN.

Step 2. Graduate school, AKA “Doctorate” AKA “Ph.D.” After finishing college, most people who want to do research (in any field, not just physics!) apply to graduate school. It’s usually a good idea to go to a different university for graduate school, to experience a new place and meet new people. The first one to two years of grad school in the US feels a lot like undergrad, only more so: classes, projects and papers, exams. Each university has a different set of exams for physics students to pass, before they can focus all their time on research. During the time that students are taking classes, they are also usually teaching classes at the university. They may be supervising labs, grading, or teaching small sections of a bigger lecture class once a week. Physics grad students may also get started doing research right away with a group of people at their university. This means that most science grad students are not paying to go to school like law students or medical students — they are getting their tuition covered, and getting paid, by teaching or by doing research.

After the classes are over, graduate students in physics focus on research. They have one or more advisors, who study a topic that the student also wants to become an expert in. The average physics Ph.D. is about six years, so people may spend 2 years on classes and then four years on research. This is one of the most misunderstood parts of science grad school, I think. After those first few years, grad school is a lot like a regular job. You don’t have any more classes, you do work, you get paid, and your tuition is paid by the research group.

The culmination of a Ph.D. in any area is the thesis. In this document, the student puts together their contribution to their field: their advancement of the knowledge in their research area. They should present a new idea, or answer a question no one has ever answered, or write about a new measurement they’ve done. The thesis is judged by a committee of professors including the student’s advisor, and once it is done, the degree of “Doctorate” is awarded and people joke around with you for a while calling you “Doctor” and asking if there’s a Doctor in the house.

One tip for family and friends of graduate students: The question that no one near the end of the Ph.D. wants to be asked is “When will you be done?” It may seem like polite chit-chat to you, but it may be a wrenching topic for them. There is no set schedule for a Ph.D. to finish. Ph.D.’s are not necessarily awarded in the spring, or in the fall, it doesn’t come everyone after a set number of years like 4, 5, or 6. It’s a decision made by the students and the advisors, when they
all feel like the work they are doing is ready. Asking people when they’ll finish only reminds them that they may not know THEMSELVES when they’ll be finished, and that’s often frustrating.

Step 3. Postdoctoral Research Scientist AKA “Postdoc.” This is the job that I have now. After finishing a Ph.D. in partiçle physics, people who want to continue doing research usually take a job at a university or lab called a “postdoc.” There’s a pretty seamless transition from grad school to being a postdoc, because postdocs also do research — similar to the last 4 or so years fo grad school. In our field, people usually take a job at a different university than the one where they were a Ph.D. student, and they keep the job there for about 4-5 years, with a bit of variation on the term (sometimes 3 years, or as many as 7…). Postdocs are often put in charge of bigger projects, and do more mentoring of grad students. Postdocs also have more choice about which topics to work on.

Step 4. Faculty member or Researcher at a Lab. After being a postdoc, physicists staying in the field apply for research positions at labs, like Brookhaven National Lab where Peter works, or they apply for research or faculty jobs at universities. Both offer opportunities for continuing research, and faculty members teach classes as well. (Sometimes research associates teach, too.) Once you have this position, you still have to deal with getting tenure if you want to stick around. I remember listening to a very interesting NPR interview with a Harvard biology professor whose students couldn’t believe that she still had things to worry about — the job she had as Harvard Professor was her goal, wasn’t it? She explained that she still had a lot to do if she wanted to STAY a Harvard Professor. The whole interview about her career and passion for deadly mushrooms is online.

Hopefully, this will give you some context for the posts here, written by people at the grad student, postdoc, and researcher/faculty levels, and some idea of the paths we’ve taken to get here.


Tags: , , ,

4 Responses to “What is it that you do, exactly?”

  1. David says:

    Hi Katherine and thanks for the interesting post. I wonder if you could possibly give a comparison for the UK university system if possible? I’m way too old to use it but would find it fascinating reading.

  2. Paul says:

    Here in Connecticut, USA (and most likly in other regions), it is very difficult to find high school Physics teachers. I know of someone teaching Physics with only one course of college level Physics! But the truth is that the majority of Physics students take the path that you have described.

  3. Katherine Copic says:

    Hi David and Paul -

    I’m no expert on the UK system, but I’ll ask around and see if I can get some information on it. I know the Ph.D.’s are usually shorter, so the postdocs may be longer, and the faculty system is pretty different.

    As for Physics teachers, many people do enter into science disciplines wanting to teach at the high school or college level. In fact the majority of Physics students do *not* take the path I described. Only those who want to continue to do physics research on basic questions and publish papers follow this path. According an American Institute of Physics study of the undergraduates in Physics in 2004, only 7% stayed in Physics or Astronomy. Most went into careers in related fields, like engineering, computing, or other technology. You can see some of the details here. They don’t include a separate number of teachers in that graph, but another table from the study said that 5 to 8 years after graduation, 12% of students were working in education. So, that’s almost double the number doing physics research. There are lots more statistics about what types of jobs people take, salaries, and more on the AIP site.

  4. Andrew says:

    Hi Katherine,

    I am curious if you know around how many people leave the field at each step (undergrad->PhD->post-doc->researcher->tenured), and what the determining factor is between who stays and who goes? I am particularly curious about the last 2 transitions. It seems like every tenured physics professor at my undergraduate university (which was only a state school) got his degree from a very prestigious university like MIT or Harvard, which makes me think the competition to get tenure must be very fierce. Thanks!

Leave a Reply

Commenting Policy