A couple of days ago I read an interesting article on the Wall Street Journal, reporting about the HR strategy of Google. The driving principle of Google is a constant change and innovation which, in turns, should keep the
employees engaged. However, a flux of engineers, sales representatives etc takes place from Google to Facebook or Twitter. Why does it happen ? To tackle the problem, Google is developing the “Happiness algorithm”. Data extracted from progress reports, evaluation forms, etc. are crunched into a machinery which is supposed to output the level of commitment and satisfaction the employee has. Not surprisingly the approach was not well received as it leads to reduce human brain and emotions into a set of data which are then
compared to some kind of template. Conclusions are drawn from there. Many of the Google employees stressed that the main reason for applying and working for Google is the “Wow effect” and since the beginning, the excitement faded and has being looked for somewhere else. Google should not invest in algorithms to predict the level of pattern of the engagement, but rather in new products and R&D which is what attracted good minds. This is bottom line expressed by its employees in return to the company decision.
Should we learn anything from the Google experience ? On one side the size of the LHC Experiments indicate a similarity between them and companies like Google. On the other hand, our aim is fundamental research and the management itself does not have profit as its goal. Nevertheless, we do encounter bumps in the road. In particular the life of a graduate student is very challenging now. Besides the student type role of learning and producing results, the student is frequently a member of a larger group, learns how to interact, how to share the work and the reward, she/he is given the opportunity to present her/his job in front of the Collaboration and to International
Conferences. We should not forget that learning her/his subject means learning the theory behind the data analysis, the computational tools, the experimental probes available, the statistical interpretation of the results, all this along with hardware activities in most cases. Given the big challenge in front of each students, the mentors do have the responsibility of making the environment pleasant, of supporting students when needed and giving the appropriate guidance. No, algorithms should not be used!
It is a critical moment for all of us belonging to the LHC experiments. Great are the expectations, both in terms of discovery and in terms of personal interest given how sophisticated analyses will be carried out in this environment. Because of the delay in the past years and the accident of last September, the enthusiasm might be reduce. On top, student might be close to graduation, for which they planned of having a data analysis completed.
The management is doing a great job in holding the Collaboration together, keeping it engaged. Participation to meetings and understanding of what activities are on-going is in fact the best reward to the effort of their colleagues. Group conveners and mentors follow the lead. It is crucial that whoever experienced the beginning of an experiment share what it means, if unhappiness shows up along the way. The LHC is the discovery machine once operational and the physics we’ll discover might change our view of the world. Yes, I know. This by itself does not help if you spend a couple of days debugging your code and you feel frustrated, I understand. Let me tell you how I felt when I arrived to Fermilab. I was freshly graduated in Italy (the system is different than US, our “laurea” is equivalent to the master) and I was given the opportunity to spend three months at Fermilab. It was extremely exciting for me. And all my expectations were met, and what I found was even beyond that. As soon as I landed, I got engaged in some testing, cabling, services. These activities are naturally not as intellectual as carrying out an analysis, but they do transfer ownership of the experiment. If you have the key to go into the pit at night (that was the case at CDF, the LHC experiments require more security checks), climb into the detector
sit with a handful of colleagues inside the detector, that detector will be yours. And no bumps in the road will mislead you, you will always be excited when it comes to maintain it operational and analyze the data it produces. When the first data event was recorded at CDF, people were emotional. Likewise to the LHC, physicists can work decades on the same project and bringing it to completion is a great satisfaction. We should all encourage the continuous effort in education, but we should also allow young collaborators to experience such a participation. Passion stems from understanding that you are contributing to an important project, that your effort is crucial to its progress
and success. Hardware activities and operations are a natural place where this can happen. Even if the LHC experiments will mainly operate remotely and most of people will be based at their home institutions, visiting CERN and devoting time to activities closely related to the detector constitutes a deep push. Many students in fact decide to join High Energy Physics soon after they spend time at the laboratory. The exciting field of study and the idea of participating to a unique and large project such as the LHC is a real motivation. The picture below was taken when beam circulated in the LHC last year and ATLAS recorded events. It’s happening soon!