• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Archive for June, 2010

科学家写科幻(转载我的科学网博客)

假如存在造物主,我是说“假如”的话,他/她/它想给他/她/它的子民们留一条消息,怎样做,才能使无论位于宇宙的哪个角落,出现在哪个时间,以什么形式出现的文明,都能看到这条消息?

这不是科幻小说,这是一篇科学论文,发表在《现代物理通讯》上[1](SCI的!),两名作者都是理论物理学家,一位来自俄勒岗大学,另一位来自加州大学圣芭芭拉分校。宇宙从大爆炸诞生起,已经137.5亿年了,经过了暴胀,冷却,星系形成,时时刻刻都在膨胀,最后微不足道的一点时间内才形成了我们人类文明。假如有这样一条消息,在遥远的宇宙另一侧,迟或早几十亿年,怎么才能读到跟我们一样的消息呢?实际上,换一个不那么吓人的问题,也可以问,在宇宙演化中什么量是可以承载信息,而信息又不会随演化而丢失的。寻找不变量或说是守恒量,是物理学家最感兴趣的事情。作者说,宇宙微波背景辐射温度分布的涨落,投影到球谐坐标,就可以得到一组放之宇宙而皆准,不随时间变化的数。作者估计,这里面最多可以提供10万比特的编码信息。当然,这样放之宇宙而皆准的东西,可能还有宇宙背景中微子或引力波。

从ISI Web of Knowledge,可以查到这篇文章被引两次,一篇是会议文集,另一篇是哲学论文。该哲学家认为:神学与玄学是科学范围之外的,因为它们既不具有预言能力,也不具有统一能力。能产生新的预言内容的神学假说则可被看成是科学的,比如这篇文章。Okay,既然哲学家都这么看,那发表在科学杂志上也不奇怪。重要的不是假设,而是方法。

这样“不务正业”的科学家还不少。上面那位加州大学的Zee,与另外的作者合作,还写了其它有意思的东西。一篇叫《星际中微子通讯》,建议用0.63亿亿电子伏(6.3PeV)的中微子实现星际通讯[2]。用电磁波在浩瀚宇宙间通讯是不太合适的,也不安全,万一被坏蛋外星人听见了呢?同样,SETI计划(寻找外星人计划,早先曾由美国政府支持,现在基本上由私人机构支持)也该试着用大型的中微子探测器,而不仅仅是电磁波。这篇文章发表在更有名的《物理快讯B》上,不过还没有人引用。该文的第一作者是夏威夷大学的John Learned。Learned是我们较熟悉的中微子实验家,现在也参与了一些实验,但主要精力大概花在推销他的Hanohano实验计划上。Hanohano的全称是夏威夷反中微子探测器,计划做成1万吨的液体闪烁体探测器,沉在夏威夷附近的海底,可以测量地球中微子,监测反应堆等等。当然,也可以找外星人,如果外星人先用中微子向我们打招呼的话。Learned与Zee等人还写过《造父变星宇宙因特网》[3],只起来就比较神。顺着这条线走下去,还真查到不少这样科幻一样的科学论文,绝不仅仅这几篇。

其实,科幻与科学是孪生兄弟。最有名的科幻著作大概是凡尔纳的《海底两万里》。随着科学技术发展,他幻想的潜水艇与人类登月后来都变成了现实。一般认为,英国诗人雪莱的夫人玛丽.雪莱1818年写的《科学怪人》是第一部科幻小说。但是据路甬祥院士考证,1610年,德国天文学家开普勒就创作了科幻小说《梦》(见《世界著名科学家科幻小说系列》序言)。科幻常分为软科幻和硬科幻,前者强调哲学、社会、心理等问题,弱化科技的份量,而后者则追求细节的准确,以科技推动情节发展。相当多的科幻作家本身就是优秀的科学家,尤其是硬科幻。例如科幻小说三巨头中,亚瑟.克拉克是卫星通讯技术的奠基者,阿西莫夫是波士顿大学的生物化学教授,既是科幻作家,也是相当出色的科普作家。科学家写科幻,还真得想一想发在哪儿合适。

宇宙大爆炸论的奠基人之一伽莫夫写过《物理世界奇遇记》。高中的时候家里不知道怎么有这本书,当然看不懂,也没听说过伽莫夫和宇宙大爆炸,只觉得内容挺怪,大部分的情节(如果有的话)都没印象,只记住了几张插图:一个人骑着自行车慢慢过来,街道变短了,窗户变得象狭缝;将台球收到三角形框架内时,球开始在框内滴溜溜地转,然后居然漏了出来;打猎时一只老虎扑过来,拿着猎枪瞄准,结果看到一排老虎,像《说唐》里罗成的绝招梅花七蕊。大学时学了相对论和量子力学,忘记老师悉心教给的复杂积分后,突然想起这些图,恍然大悟。

[1] Message in the Sky, D.H. Hsu and A. Zee, Mod. Phys. Lett. A 21, 1495 (2006), arXiv:physics/0510102.
[2] Galactic Neutrino Communication, John G. Learned, Sandip Pakvasa, A. Zee, Phys. Lett.B 671, 15, 2009. arXiv:0805.2429
[3] The Cepheid Galactic Internet, John G. Learned, R-P. Kudritzki, Sandip Pakvasa, A. Zee, arXiv:0809.0339

Share

ALICE has just submitted its fourth paper, on the anti-proton to proton ratio in p+p collisions, to Physical Review Letters.  This is a really cool measurement because it is one way of quantifying how many of the particles we create in our collisions – as opposed to how many of the particles we see are remnants of the beam.

A proton has three valence quarks, two up quarks and one down quark.  The proton’s electric charge is +1.  An anti-proton has three valence anti-quarks, two anti-up quarks and one anti-down quark.  The anti-proton’s electric charge is -1.  The anti-proton is the proton’s anti-particle.  When a proton and an anti-proton come together, they annihilate.

A baryon has three valence quarks –  examples are protons (two up quarks and a down quark) and neutrons (two down quarks and an up quark).  There are many more exotic baryons – my favorites are the Λ (an up quark, a down quark, and a strange quark) and the Ω (three strange quarks) . A proton is a baryon, while an anti-proton is an anti-baryon.  Baryon number is the net number of baryons in a system and it is conserved in all processes we have observed in the laboratory.  In our p+p collisions, the baryon number is 2 because there are two incoming baryons.  Because the anti-proton is an anti-baryon, it had to be created in the collision.  Moreover, because there were no (net) anti-quarks in our incoming protons, all three anti-quarks in any anti-proton we see had to be created in the collision.  If we just look at protons, we can’t tell if they were created in the collision or if they are remnants of the beam.

Since anti-protons don’t exist prior to collision, one way of quantifying how many particles were created in the collisions, as opposed to how many are beam remnants, is their ratio.  If this is near zero, most of the particles we observe are remnants of the beam.  If this is near one, most of the particles we see were created in the collision.  At low energies, the anti-proton to proton ratio is closer to zero, but we expect it to be almost one at LHC energies.  Here you can see the collision energy dependence of the anti-proton to proton ratio (Figure 4 of the new paper):

The y-axis is the anti-proton to proton ratio.  The upper x-axis is the center-of-mass energy of the collision.  The different data points are measurements from different experiments.  The line shows a fit to the data.  The lower y-axis is a little more complicated – I’ve put an explanation below, but you can skip it and just look at the top x-axis.  You can see that the anti-proton to proton ratio is very close to one at LHC energies.  But of course, we have to quantify how close the anti-proton to proton ratio is to one.  Specifically, we measured it to be 0.957 ± 0.006(statistical) ± 0.014(systematic) at 0.9 TeV and 0.991 ± 0.005(statistical) ± 0.014(systematic) at 7 TeV.  Most of the work went into determining the uncertainty.  We could reduce the statistical uncertainty by just taking more data, but the systematic uncertainty is limited by the method and the experiment.

What do we learn from this measurement?  It helps us test and refine our understanding of baryon production in proton-proton collisions.  We can compare to models for proton and anti-proton production and this lets us constrain some models and exclude others.

To give a feel for how complicated it can be to do the measurement, I’ll explain one of the details that has to be considered to do this measurement right.  If we see an anti-proton, we’re pretty sure it was really created in the collision.  But we have billions and billions of protons in our detector.  A very fast particle created in the collision could knock a proton out of our detector.  If we measure a proton, how can we be sure that it didn’t come from our detector?  We have accurate enough charged particle tracking to see where the proton came from.  This figure (Figure 2 from the paper)

shows the distribution of the distance of closest approach (dca) of protons and anti-protons to the collision vertex.  Real protons and anti-protons created in the collision will mostly be close to the collision point (near a dca of 0), so this shows up as a peak around a dca of 0.  Our largest background is from protons knocked out of the beam pipe by a fast particle created in the collision.  These protons don’t get close to the collision vertex – their dca is larger.  This is why the proton peak on the left sits on top of a plateau.  But we can’t knock anti-protons out of the beam pipe – so we don’t see the same plateau under the anti-proton peak.  Protons knocked out of the beam pipe will also be slower on average than protons created in the collision.  This is why we see the plateau from protons knocked out of the beam pipe on the left (for protons with momentum p≈0.5 GeV/c) but we don’t see it on the right (for protons with roughly twice the momentum, p≈1.0 GeV/c).  To get an accurate anti-proton to proton ratio, we have to subtract off the protons knocked out of the beam pipe.  We can tell where particles travelling practically at the speed of light went to within a few mm – and we need to in order to do our measurements.

Isn’t that cool?  ALICE is a wonderful detector!

Explanation of the lower x-axis of the anti-proton to proton ratio plot:

This is the difference between the beam rapidity, y, and the rapidity where the measurement is done (|y|<0.5).  You can calculate the beam rapidity using

y = 1/2 ln((E+pz)/(E-pz))

where pz is the momentum along the beam axis and E=√(E2+m2) is the total energy.  If you plug in the numbers, you’ll see that the beam rapidity is about 7.6 for 900 GeV and about 9.6 for 7 TeV.  I have fudged over a detail, which is that it matters where we do the measurement.  If we look closer to the beam axis, we’ll see a lower anti-proton to proton ratio and we’ll get the highest anti-proton to proton ratio at rapidities close to zero (roughly perpendicular to the beam axis).

Share

On the border

Sunday, June 27th, 2010

The LHC ring crosses the France/Switzerland border in something like 6 places.  Unfortunately, since Switzerland isn’t in the EU, one needs to have both Euros and Swiss Francs when working and living near CERN.  The main site is just barely in Switzerland, while several other CERN sites are in France.  For example, our detector, CMS, is about 8 miles into France.

Vending machines do not take more than once kind of currency.  Also, border guards don’t take kindly to bringing wine or meat across the border.

As for the American dollars, I only happened to have those because I recently traded euros to someone who was moving to France permanently, while I was going back to the US within a week or so.

Share

未来电脑什么样?

Friday, June 25th, 2010

要换电脑了。现在用的是2005年买的IBM T42,由于一直超负荷运行,已经撑不住了,共拆了十来回,换了两块主板,一个键盘,一个风扇,两个交流电源,两块电池,一颗CMOS电池,一个显示屏轴,一条内存和一块硬盘。原装没换的部分有:机架、CPU、显示屏、一条640M内存、一块30G硬盘。没了。同事戏称我的笔记本是自己攒的IBM。

从小一直喜欢计算机。用过的第一台电脑是夏普PC-1500,上初二的时候。显示屏是一行液晶,带个三色打印机,能读写磁带,使用固化的BASIC语言,相当的高级。记得那时候读一个解汉诺塔的程序,用到递归,怎么都读不懂。后来用过苹果II,286,直到586。眼看着大型机、小型机被遗忘,alpha,、Sun、HP工作站被淘汰,笔记本电脑走进千家万户,也不过十几年而已。虽然性能在不断提高,天天背着的笔记本电脑还是不尽如人意,太小则用起来不方便,太大则太沉。

夏普PC1500

夏普PC1500

那么未来的电脑应该是什么样呢?智能手机肯定会占有一席之地,但是不能代替工作用的电脑的。工作效率高的电脑,必须有两个先决条件:大的显示屏,方便的输入方法。计算、存储、网络都容易解决。一条思路是用眼镜或投影仪代替显示屏,用手指遥感代替键盘,但似乎离我们还是太远。

在我心目中,十年后,电脑应该像卷轴一样,随便找个兜就能塞进去,用的时候象宣读圣旨一样,拉开,这是显示屏。摸出一支笔,或者拣个木棍什么的,直接在屏上写。芯片们放在卷轴里。柔软的电子墨水屏已经出现了,既不伤眼又不耗电,只是还不够实用,将来需要做的,一是更柔软结实的电子墨水材料,二是显示速度要提高一百倍,三是色彩,这些十年应该足够解决了。手写技术需要做的,一是如笔在纸上写字般的触感,二是更聪明的识别技术,这些十年也应该足够了。

展开后的电脑

展开后的电脑

可弯曲的电子墨水屏

可弯曲的电子墨水屏

Share

灯光无线上网

Friday, June 25th, 2010

最新一期的《科幻世界》上有一则新闻,中科院发明通过灯光无线上网的新技术。中科院半导体所通过快速开关LED发出的照明光线,实现了笔记本的无线上网,这种技术能够提供最高每秒2M的带宽。由于切换速度达到每秒2百万次,人眼无法察觉,不影响照明的使用。

这是一个很有创意的想法。LED 光源广泛用在高能物理探测器的刻度中,所以对做高能物理的人来说,这个技术一看就懂,也相当简单,一般学生都能做出来,不过似乎没有人想过去这样做。光波跟微波一样,也是电磁波,但这个技术与现在使用微波的无线上网相比,是它靠LED的快速开关而不是频率调制来实现数据传输。大亚湾的中微子探测器使用自制的脉冲发生器驱动LED,定期对光电倍增管进行刻度,脉冲发生器的电路板大小仅为1.71X0.45厘米。如果要求每次闪光的光强比较稳定,脉冲宽度需要到10纳秒以上,如果降低光强稳定的要求,全宽半高可以达到3纳秒。考虑到完整的脉冲波形,用来做无线传输的话,开关一次就是一个比特的信息,带宽达到 25M应该没问题。不过这是弱光,兼做照明的话需要很强的电流驱动。用途现在还比较牵强,不过将来也许可以用在特殊领域。

Share

CERN and Surroundings

Thursday, June 24th, 2010
Meyrin, seen across the fields

Meyrin, seen across the fields

It’s good to be back at CERN again, it’s a good place for work. As usual, we had fruitful discussions with people here.
For once, we are not staying in the CERN hostel (it was fully booked because summer is a really busy period here). Instead, we are staying in nearby Meyrin, and are discovering for the first time the local beauties during evening strolls. The hot and humid Japanese summer has really taught me to appreciate summer in Switzerland! This week, every day has been sunny, but still it’s pleasantly fresh. After six years away from Switzerland, I am now rediscovering the local bird songs, the rustling of wheat fields in the wind and the smell of Swiss summer meadows. When I lived in Switzerland, I did not particularly appreciate these things, but coming back from abroad, I am experiencing everything in a different way now.
At the moment, Meyrin is a big construction site. But once they are done, there will be a direct tram line from the train station of Geneva to CERN! The tram will take people also directly to the University of Geneva, which will surely help in creating synergies.

Soon, we’ll be off to Amsterdam, crossing our fingers that it won’t be too rainy.

Share

New Q&A websites for physics

Wednesday, June 23rd, 2010

I’m always intrigued by new ways to use the Internet to improve the way we do and share physics. It was something of a coincidence that within a week of each other I received two e-mails introducing new question-and-answer websites of interest to the high energy physics community and the general public interested in physics.

  • A proposal for a High-Energy Physics Q&A site based on the popular Stack Overflow framework. This is still in the “definition” phase where it’s looking to gather a critical number of followers and model questions to demonstrate the viability of the project. A shining example of this sort of site in a related field is Math Overflow.
  • Quora, a similar website built on a slightly different architecture. Quora is a Q&A site for any kind of question (not just science) and is tied into social networking; it requires a Facebook or Twitter account to join. Quora already has High-Energy Physics and Particle Physics sections. (I don’t actually understand the difference between the two categories.)

Both sites show a lot of promise and I look forward to seeing how they progress. These are the Web 2.0 progeny of newsgroups (like sci.physics.research) and  forums (e.g. Physics Forums) that really piqued my interest in physics as a teenager.

I guess at this point I should make an obligatory reference to CERN’s role in the history of the Internet.

Anyway, I encourage people to check out the proposed HEP-overflow (my own made up name) and Quora. HEP-overflow, in particular, needs community support to move on so I especially encourage researchers to take a look at it.

Finally, as always, we’re still very happy to try to answer any questions that you leave in the comments of our blog! 🙂

Cheers,
Flip (US LHC blogs)

Share

Conference season

Wednesday, June 23rd, 2010

It’s that time of year again – conference season.  There are dozens of conferences and meetings at the beginning of the summer, when professors and grad students have a break from teaching responsibilities so can handle extensive travel to multiple meetings.  Just scanning the list of talks I see posted on the ALICE web page I see at least 15 conferences in June, July, and August.  Almost every in the field does at least a little travel over the summer.  I am still on the road from a summer school on jet physics at Lawrence Berkeley National Lab, giving a seminar at UC Davis, and teaching some undergrads at Cal Poly about ALICE software.  (This is why I haven’t posted in a while.)  I’ve tried to minimize my work travel this summer but I’ve already spent two weeks in California and may spend another 2-3 weeks at CERN at the end of the summer.  This conference season will be particularly exciting because of all of the new results from the LHC.  ALICE has several papers in the pipeline and several new results.  I’ll try to highlight these when I get back.

Share

大亚湾核泄漏的谣言

Wednesday, June 23rd, 2010

6月15日,香港媒体出现大亚湾核泄漏的消息,这是第一波。很快,大陆的网络开始跟进,基本上是照抄和引用,说有核泄漏,这是第二波。大亚湾核电站24小时后发表澄清,说没有核泄漏,更多的大陆网络媒体开始引用核电站的话,说没有核泄漏,这是第三波。48小时后,国家核安全局发表澄清公告,事情告一段落。

核能是一种清洁能源,发展包括核能在内的清洁能源是我国的国家战略。但是出于对核事故与放射性污染的恐惧,有许多不了解核能的人,谈核色变,反对建核电站。实际上,现代的反应堆技术已经基本成熟,不仅是清洁能源,其安全性实质上好于占我国发电份额80%的火电。

大亚湾核电站是压水反应堆,堆芯由157个燃料组件构成,每个燃料组件有264根燃料棒,每根棒有271个燃料元件。燃料元件用二氧化铀烧结成1厘米大小的陶瓷状圆柱体,装入0.57mm厚的锆合金管内密封,构成一根燃料棒。每个反应堆有4千多根燃料棒,1千1百多万个燃料元件。反应堆运行时,堆芯产生的能量由流经燃料棒外壳的冷凝水带走,并在蒸汽发生器处将热能交换给二回路的给水,产生蒸汽,推动发电机组。冷凝水同时起到慢化中子,维持反应堆运行的作用。冷凝水的运行范围包括堆芯、蒸汽发生器、以及连接它们的管道等,称为一回路,完全位于混凝土安全壳内。这个安全壳就是我们从外面看见的圆柱形厂房,称为核岛。冷凝水是有放射性的。裂变产物中有一部分是放射性气体,在高温高压下会渗透过锆合金管,进入冷凝水中。同时中子活化也会带来放射性。在高温高压下,一回路的冷凝水在正常情况下也会有微小的渗漏。这些渗漏出来的水会被收集起来,由专门的处理系统通过除盐或蒸馏的方法去除放射性。因此,放射性物质有三重屏蔽,一是烧结的燃料元件和燃料棒外壳,屏蔽掉绝大部分放射性;二是一回路的压力边界,只要管路不破裂,放射性会控制在非常轻微的范围内;三是混凝土安全壳,将几乎全部的放射性屏蔽在场内。在高温高压下,燃料棒外壳有可能破裂。如果破裂,由于燃料元件烧结成陶瓷状,98%以上的放射性物质仍会被留在燃料元件内,但会有一部分放射性产物进入冷凝水,增加它的放射性。只要在允许值之内,则核电站的专门处理系统可以正常处理。一般压水堆的设计最多允许1%的燃料棒破裂。

5月23日大亚湾核电站二号机组发现冷凝水放射性轻微上升,但仍低于允许值的十分之一,后来分析可能有一根燃料棒的外壳有裂纹。由于冷凝水是密封的,与核泄漏是完全两回事,分类上属于“带有微小偏差的正常运行”,国际上出现同类情况也很常见。根据“忧思科学家联盟”(The Union of Concerned Scientists)1998年的不完全统计,几年间出现燃料棒破裂而保持正常运行的有:1)佛蒙特州的Yankee电厂;2)北卡罗那州的 Brunswick电厂;3)弗吉利亚州的Surry电厂;4)威斯康星的Point Beach电厂;5)密歇根州的Palisades电厂等等。其中Point Beach电厂的燃料棒破裂,以至于内部的燃料元件都可以看得见,但其冷凝水的放射性水平约为允许值的十分之一。

核电安全事故分为7 级,4567级为事故,123级称为事件,都需要上报国际原子能机构。其中3级为有少量放射性外泄,工作人员受到辐射,对健康产生影响。低于以上分级的称为0级,叫偏离,安全上无重要意义,不需要上报。此次大亚湾燃料棒破裂连0级都够不上,而“核泄漏”至少是3级以上。

中国目前80%的电来自火电,15%来自水电。火电除了广为人知的温室气体排放和环境污染外,实际上在其它方面造成的破坏也相当高。我国煤矿的百万吨死亡率为2.041。一个 900MW的火电厂(相当于大亚湾核电站一个反应堆),每年消耗200万吨煤,要付出4个矿工的性命,还不包括远远高于这一数字的矿工的职业病伤亡(例如黑肺病)和火电厂环境污染造成的死亡。对核电安全的恐惧,颇有点象有些人对乘坐飞机的恐惧,直觉上,飞在高空中是一件危险的事,而坐在汽车里则没有太多人担心。实际上根据大量统计,坐汽车的风险比坐飞机大得多。

更不为人知的是,火电造成的放射性污染居然也大于核电厂。放射性实际上无处不在,例如一个人体内自身的放射性就有5000Bq左右。只要放射性水平在适当的范围内,对人并没有危害。在煤矿中也往往有较高的放射性,这些放射性会随煤燃烧释放到空气中。一个900MW的火电厂一年平均释放出60亿Bq的放射性。水电也是清洁能源,但是也有移民、破坏自然环境、破坏生态平衡的坏处。比较而言,核电还是比较好的选择,除非我们打算不用电,回到农业社会。

Share

9th Annual GSA Triathlon

Tuesday, June 22nd, 2010

On Saturday July 10th at 8:oo am the Graduate Student Association of Fermilab will be putting on the 9th Fermilab Triathlon! This is a FREE race for all those who hold a Fermilab ID badge and from stories told in the past sounds like it is a real good time. Individuals or teams can compete (having on team member doing one task and then another completing the next) and many stories of the fun to be had has been conveyed to me by the CDF elders over my time with the experiment.

This will be my first time competing in this event and I am very excited. I am a terrible swimmer, but the first portion of the race happens in the Village’s pool with a life guard and other competitors around, so I figure I’ll be able to flop my way through it.

The events are structured as such:

  • 800m Swim in the FNAL pool.
  • 20km Bike on an out and back loop on FNAL roads (see below for race route).
  • 5km Run on a great loop course consisting of both paved roads and prairie paths (see below for race route).
Bike Route for the Fermilab Triathlon

Bike Route for the Fermilab Triathlon

Running Path for Fermilab Triathlon

Running Path for Fermilab Triathlon

I would like to encourage anyone who is from the physics community that may have participated in past years to share their stories in the comments.

This promises to be a beautiful race and a lot of fun…if I end up finishing without killing over expect posts with results from the race to follow!

Share