• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USA

Latest Posts

Fermilab | Batavia, IL | USA

View Blog | Read Bio

U.S. ships world’s largest digital camera to Chile

A four-ton digital camera landed safely in Chile last week on its way to making history by enabling the world’s largest galaxy survey, starting next year. Getting the camera there was a worldwide feat of technlogy and transportation prowess.

Doing big science, such as building the Dark Energy Camera, takes big effort and big cooperation. Building and installing one of the world’s largest digital cameras to conduct the most extensive galaxy survey to date as part of the Dark Energy Survey experiment required scientists and manufacturers from across the globe. Researchers from more than 26 institutions enlisted the help of 129 companies in the United States and about half a dozen in foreign countries to fabricate the often one-of-a-kind components for the camera.

Most components for the camera migrated to the Department of Energy’s Fermilab for testing and assembly, as seen in this timelapse video , before being shipped to the four-meter Blanco telescope in the remote Chilean mountains. The journey required help from planes, trains, trucks and boats to traverse continents and oceans, and ended with an 11-hour drive to a mountaintop.

The DES’s combination of survey area and depth will far surpass what has come before and provide researchers for the first time with four search techniques in one powerful instrument. To find clues to the characteristics of dark energy and why the expansion of the universe is accelerating, DES will trace the history of the expanding universe roughly three-quarters of the way back to the time of the big bang.
During five years of operation, starting in 2012, the 570-megapixel camera will create in-depth color images of one-eighth of the sky, or 5000 square degrees, to measure 100,000 galaxy clusters, 4,000 supernovae, and an estimated 300 million distant galaxies, about 10 million times fainter than the dimmest star you can see from Earth with the naked eye. It will yield the largest 3-D map of the cosmic web of large-scale structures in the universe.

–Tona Kunz


Tags: , , , ,

  • http://facebook thomas fritz

    Very good acomplishment, very exciting indeed, hope it achieves it’s goal.

  • Tania

    One of my friends pointed me to this website : http://www.gigapixel.com/ which claims this is a gigapixel camera. If this is true then is the title of this post wrong? Thanks.

  • http://www.fnal.gov Fermilab

    Good question.
    The site you reference says that it combines several images to reach the gigapixel size. The Dark Energy Camera will use 570-megapixels in one photograph. These are contained in 62 digital chips called charge-coupled devices, or CCDs, that each contains 8 million pixels, plus 12 chips of 4 million pixels each for guiding and focusing. The LSST camera will have more pixels, but it is in the R&D stage and not expected to be operational for years.

    The Dark Energy Camera also tops the list in terms of weight, 4 tons; for the size of most of its components and for the area it will shoot, about one-eight of the sky. The DECam will have the largest optical survey power in the world and will carry out the largest galaxy survey.