• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Brookhaven | Long Island, NY | USA

View Blog | Read Bio

Brookhaven Scientists Help Develop Model for Future Accelerators

The EMMA accelerator ring

Working with an international team, three physicists from Brookhaven Lab have helped to demonstrate the feasibility of a new kind of particle accelerator that may be used in future physics research, medical applications, and power-generating reactors. The team reported the first successful acceleration of particles in a small-scale model of the accelerator in a paper published in Nature Physics.

The device, named EMMA and constructed at the Daresbury Laboratory in the UK, is the first non-scaling fixed field alternating gradient accelerator, or non-scaling FFAG, ever built. It combines features of several other accelerator types to achieve rapid acceleration of subatomic particles while keeping the scale — and therefore, the cost — of the accelerator relatively low.The technology is of particular interest to Brookhaven physicists who want to accelerate muons, heavier but short-lived relatives of electrons, to study the fundamental laws of physics. Brookhaven physicist Scott Berg, who worked on the conceptual design and commissioning of the new machine, as well as tests of its performance, explains:

Colliding beams of muons can let us study the fundamental laws of physics at the highest energies and smallest length scales — beyond what any existing accelerators are capable of. Accelerating muons can also produce an intense beam of neutrinos, another type of subatomic particle, enabling detailed studies of their properties.

See the full story here.

Karen McNulty Walsh, BNL Media & Communications Office

Share