• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Zeynep Isvan | Brookhaven | USA

View Blog | Read Bio

Domestic science

We physicists are a very international crowd, and proud of it! The opening slide of conference talks typically has a list of institutions and their home countries, frequently pinned on a Google map. This kind of international collaboration is imperative to advancing science. I can’t think of any scientist who would have it any other way. Is it unreasonable, then, to push for domestic science? Is it insignificant whether an experiment is based in one’s home country (i.e. the primary country in which you have a job as a scientist) or elsewhere in the world, as long as it is somewhere?

I think not.

The more we discover, the more effort it requires to uncover the next unknown. An astounding number of scientific discoveries have taken place over the last several decades. The remaining ‘known unknowns’ are hard to reach and require expensive machinery. The ‘unknown unknowns’ require even more investment. This is one reason most large experiments are international collaborations funded primarily by the governments of the host countries, with financial and scientific contributions from all their members. Scientists have access to common computing resources and data, hold meetings by video conference, and travel a few times a year to meet face to face. It works perfectly well, and I would say hardly any physicist really minds in what country their experiment is based – at least not for science reasons.

So why do I think that it is not quite enough to join foreign collaborations when a nation has the means to do science at its labs, when it can be home to an international experiment? Given the varied government structures and labor costs, it really is possible that the same science will get done for a smaller financial investment elsewhere. Private companies outsource for similar reasons, why does it make a difference in science?

Here’s why. I worked at two national labs so far. At Fermilab, not a week goes by that there isn’t a school bus parked outside Wilson Hall, the main building. Every Saturday morning we have high school students visit for that week’s installment of a lecture series. The science center is open five days a week for visitors from the public; every Wednesday morning there are guided tours. Every third Sunday afternoon we have a program where anyone from the public can come listen to a lecture, tour the facilities and ask questions of scientists over cookies and juice. I personally received additional safety training so I can take visitors to my experimental hall 300ft underground. University groups visited frequently, and as cliché as it sounds, 19-year-old physics majors’ eyes do widen when you take them on an elevator into the Earth and show them a thousand-ton neutrino detector. I’ve only been at my latest position at Brookhaven for a few months, but I’ve already received invitations to judge a science fair, guide visiting children while they walk around the synchrotron ring, and to attend an undergraduate poster session. This summer I will mentor an undergraduate intern, one of three my department will host to work on experiments both within and outside the country. These are only outreach and education programs I personally took part in; there are a plethora of others across the country at labs and universities.

Domestic science gives these young people and any interested member of the public the opportunity to visit running experiments. It lets college students build parts of state-of-the-art detectors. It connects the people to the science they are collectively funding. They get to educate their children; they get to listen to public lectures from Nobel laureate physicists. I strongly believe that the most important job we do as scientists is to train future generations and enlighten the public. We will travel and collaborate internationally to do the science, but 15-year-old high schoolers can only be inspired by seeing it in action.

Don’t get me wrong – international collaborations provide plenty of projects for students and scientists all over the world. It’s never an all-or-nothing situation. But it is clear that local students and residents will benefit the most, that local educators and scientists will have access to most of the teaching opportunities. Not every nation has the resources to build a multinational high-end science experiment within its borders. Those who do would be doing their educators, students, scientists and their public a great service by keeping domestic science active, competitive and inspiring.

Share