• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

CERN (Francais) | Geneva | Switzerland

View Blog | Read Bio

Comment distinguer le Higgs d’un autre boson?

Le 4 juillet, le CERN annonçait avoir «observé une nouvelle particule » et non « découvert le boson de Higgs. » Pourquoi faire preuve de tant de retenue? Simplement parce ce qu’il était trop tôt pour se prononcer. Le boson de Higgs est la dernière pièce manquante au Modèle Standard de la physique des particules, un modèle qui a permis aux théoriciennes et théoriciens de faire des prédictions d’une extrême précision. Mais qui voudrait compléter un casse-tête de 5000 morceaux en y insérant la mauvaise pièce?

Les expériences CMS et ATLAS ont déjà attaqué les questions suivantes:

1) Voit-on tous les modes de désintégration prédits par le Modèle Standard?

2) Est-ce que chacun se produit aussi souvent que prévu?

3) Quelles sont les propriétés fondamentales de ce nouveau boson?

Bien que les premières vérifications effectuées (basées sur la moitié des données disponibles aujourd’hui) indiquent que le nouveau boson aie tout l’air du Higgs, la précision actuelle est encore trop faible pour trancher comme le montre les graphes suivants. (signal strength et σ/σSM H représentent la même quantité).

Le boson de Higgs peut se désintégrer de plusieurs façons et le graphe montre les différents canaux observés ainsi que leur fréquence. Une « force de signal » (signal strength) de 1 implique que le signal correspond exactement à ce que prédit le modèle pour un boson de Higgs. Et zéro veut dire que ce canal de désintégration n’est pas observé. Les points en noir représentent les mesures faites et la barre horizontale, la marge d’erreur associée.

Comme on le voit bien, il est encore impossible de dire si les deux premiers canaux sont compatible avec 0 (non, ce canal n’est pas observé) ou 1 (oui, on le voit au taux prévu). ATLAS et CMS doivent analyser plus de données pour déterminer si ce boson se désintègre en deux quarks b (H → bb) et deux leptons tau (H → ττ). Les trois autres canaux sont bel et bien observés mais à des taux légèrement supérieurs à ceux prévus par le Modèle Standard.

Le test décisif viendra des mesures de son spin et de sa parité, deux « nombres quantiques » (ou particularités mesurables) attachés aux particules fondamentales. Le « spin » est semblable à la quantité de mouvement angulaire qu’on associe à un corps en rotation. Sauf que pour les particules fondamentales, cette quantité ne peut prendre que certaines valeurs bien précises. Pour les bosons, les particules associées aux champs de forces, la valeur doit être 0, ±1, ±2 etc. Pour les fermions, les grains de matière tels que les quarks et les leptons (électron, muon, tau and neutrinos), le spin est soit +½, soit -½.

Aidan Randle-Conde résume bien toutes les possibilités dans son blog (en anglais). Seule une particule de spin 0 ou 2 peut se désintégrer en deux photons. Puisqu’on a vu que le nouveau boson se désintègre en deux photons, il ne peut avoir qu’un spin 0 ou 2. De plus, un boson de spin 2 ne peut se désintégrer en deux taus. Il est donc crucial de mesurer si c’est le cas ou pas en utilisant toutes les données accumulées récemment.

(tiré du blog d’Aidan Randle-Conde)

Le Modèle Standard impose que le spin et la parité du boson de Higgs soit 0+. Reste donc à déterminer si le nouveau boson est de type 0+ ou encore 0, 2+ ou 2. Le seul moyen est de mesurer les angles auxquels les produits de désintégration s’échappent. Si on observe une désintégration en deux photons, on doit mesurer l’angle entre les photons et la direction des faisceaux du LHC. Lorsque le boson se brise en deux Z, chacun donnant  à son tour deux électrons ou deux muons, il faut mesurer les angles et la masse combinée des quatre particules finales.

Voici ce que Sara Bolognesi et ses collègues prédisent pour un boson de Higgs se désintégrant soit en ZZ, WW ou deux photons. En mesurant la masse et les angles des produits de désintégration, on pourra déterminer le spin et la parité du nouveau boson. Si leur distribution correspond aux courbes en rouge dans les diagrammes suivants, c’est qu’on a bel et bien trouvé le boson de Higgs. Si cela ressemble plutôt aux autres courbes, celles associées à d’autres modèles, c’est qu’il s’agit d’un autre type de boson.

Chaque expérience a maintenant en main 14 femtobarn inverse (fb-1) de données et on espère atteindre 25 fb-1 au total d’ici la fin de l’année. Avec les 5 fb-1 accumulés l’an dernier, ce devrait être suffisant pour arriver à démasquer le nouveau venu. Il ne reste « plus » qu’à mesurer toutes ces quantités assez complexes.

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

Pour plus d’info sur le spin du boson de Higgs, regardez ces deux récents vidéos sur CERN YouTube (première et seconde partie) (en anglais seulement)

Share

Tags: , , ,