• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USA

Latest Posts

Ken Bloom | USLHC | USA

View Blog | Read Bio

“Snowmass” (Not Snowmass)

Every so often, perhaps once or twice a decade, particle physics in the United States comes to some kind of a crossroads that requires us to think about the long-term direction of the field. Perhaps there is new experimental data that is pointing in new directions, or technology developments that make some new facility possible, or we’re seeing the end of the previous long-term plan and it’s time to develop the next one. And when this happens, the cry goes up in the community — “We need a Snowmass!”

Snowmass refers to Snowmass Village in Colorado, just down the road from Aspen, the home of the Aspen Center for Physics, a noted haunt for theorists. During the winter, Snowmass a ski resort. During the summer, it’s a mostly empty ski resort, where it’s not all that expensive to rent some condos and meeting rooms for a few weeks. Over the past few decades there have been occasional “summer studies” held at Snowmass, typically organized by the Division of Particles and Fields of the American Physical Society (and sponsored by a host of organizations and agencies). It’s a time for the particle-physics community to come together for a few weeks and spend some quality time focusing on long-range planning.

The last big Snowmass workshop was in 2001. At the time, the Fermilab Tevatron was just getting started on a new data run after a five-year shutdown for upgrades, and the LHC was under construction. The top quark had been discovered, but was not yet well characterized. We were just beginning to understand neutrino masses and mixing. The modern era of observational cosmology was just beginning. A thousand physicists came to Snowmass over the course of three weeks to plot the future of the field. (And I was a lot younger.) Flash forward eleven years: the Tevatron has been shut down (leaving the US without a major high-energy particle collider), the LHC is running like gangbusters, we’re trying to figure out what dark energy is, and just in the past year two big shoes have dropped — we have measured the last neutrino mixing angle, and, quite famously, observed what could well be the Higgs boson. So indeed, it is time for another Snowmass workshop.

This week I came to Fermilab for a Community Planning Meeting for next year’s Snowmass workshop. Snowmass 2013 is going to be a bit different than previous workshops in that it will not actually be at Snowmass! Budgetary concerns and new federal government travel regulations have made the old style of workshop infeasible. Instead, there will be a shorter meeting this summer hosted by our colleagues at the University of Minnesota (hats off to thee for having us), so this time we won’t have as much time during the workshop to chew over the issues, and more work will have to be done ahead of time. (But I suspect that we’re still going to call this workshop “Snowmass”, just as the ICHEP conference was “the Rochester conference” for such a long time, even if it’s now the “Community Summer Study”.)

This Snowmass is being organized along the three “frontiers” that we’re using to classify the current research efforts in the field — energy, intensity and cosmic. As someone who works at the LHC, I’m most familiar with what’s going on at the energy frontier, and certainly there are important questions that have only come into focus this year. Did we observe the Higgs boson at the LHC? What more do we have to know about it to believe that it’s the Higgs? What are the implications of not having observed any other new particles yet for particle physics and for future experiments? The Snowmass study will help us understand how we answer these questions, and specifically what experiments and facilities are needed to do so. There are lots of interesting ideas that are out there right now. Can the LHC tell us what we need to know, possibly with an energy or luminosity upgrade? Is this the time to build a “Higgs factory” that would allow us to study measure Higgs properties precisely? If so, what’s the right machine for that? Or do we perhaps need an accelerator with even greater energy reach, something that will help us create new particles that would be out of reach of the LHC? What kind of instrumentation and computing technologies are needed to make sense of the particle interactions at these new facilities? The intensity and cosmic frontiers have equally big and interesting questions. I would posit that the scientific questions of particle physics have not been so compelling for a long time, and that it is a pivotal time to think about what new experiments are needed.

However, we also have the bracing reality that we are looking at these questions in a budget environment that is perhaps as constrained as it has ever been. Presentations from our champions and advocates at the Department of Energy and the National Science Foundation, the agencies that fund this research (and that sponsor the US LHC blog) were encouraging about the scientific opportunities but also noted the boundary conditions that arise from the federal budget as a whole, national research priorities, and our pre-existing facilities plan. It will continue to be a challenge to make the case for our work (compelling as it may be to us, and to someone who might be interested in looking at the Quantum Diaries site) and to envision a set of facilities that can be built and used given the funding available.

The first (non-native) settlers of Snowmass, Colorado, were miners, who were searching for buried treasure under adverse conditions. They were constrained by the technology of the time, and the facilities that were available for their work. I shouldn’t suggest that what we are doing is exactly like mining (it’s much safer, for one thing), but hopefully when we go to Snowmass (or really “Snowmass”) we will be figuring out how to develop the technology and facilities that are needed to extract an even greater treasure.


Tags: , ,

  • Stephen Brooks

    Are you sure Snowmass is just for “particle physics in the United States”, or is it the whole planet now?

    It’s been something of a consensus in the areas I’ve worked in (neutrino factory but the ILC people also say this) that the next big facility may have to be globally funded. On the time scales concerned, it’s important to note that China’s government budget (and that of some other emerging countries) will be growing, so by the time the future facilities are starting to be built, the US’s science budget will no longer be a large proportion of the total world science budget.

  • Ken Bloom

    I should say — other regions of the world are going through similar processes. The Europeans in particular have been running a similar study that is ahead of the US schedule; they had a major meeting at the end of September to discuss future plans. Certainly everyone in the US understands that we’re just part of a global picture, and indeed at last week’s meeting we had representatives from HEP around the world who told us about their future plans, to inform our own deliberations.

  • Ethaniel


    I think that the word “cosmic” is missing in “The intensity and frontiers”.


  • Ken Bloom

    You are right; I have fixed it.