• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Flip
  • Tanedo
  • USLHC
  • USA

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Karen
  • Andeen
  • Karlsruhe Institute of Technology

Latest Posts

  • Seth
  • Zenz
  • USLHC
  • USA

Latest Posts

  • Alexandre
  • Fauré
  • CEA/IRFU
  • FRANCE

Latest Posts

  • Jim
  • Rohlf
  • USLHC
  • USA

Latest Posts

  • Emily
  • Thompson
  • USLHC
  • Switzerland

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Alexey Petrov | WSU | USA

View Blog | Read Bio

Another one bites the dust or “SuperB? What SuperB?”

Studies of New Physics require several independent approaches. In the language of experimental physics it means several different experiments. Better yet, several accelerators that have detectors that study similar things, but produce results with different systematic and statistical uncertainties. For a number of years that was how things were: physicists searched for New Physics in high-energy experiments where new particles could be produced directly (think Tevatron or LHC experiments), or low-energy, extremely clean measurements that explored quantum effects of heavy new physics particles. In other words, New Physics could also be searched for indirectly.

As a prominent example of the later approach, detectors BaBar at SLAC (USA) and Belle at KEK (Japan) studied decays of copiously produced B-mesons in hopes to find glimpses of New Physics in quantum loops. These experiments measured many Standard Model-related parameters (in particular, confirming the mechanism of CP-violation in the Standard Model) and discovered many unexpected effects (like new mesons containing charmed quarks, as well as oscillations of charm mesons). But they did not see any effects that could not be explained by the Standard Model. A way to go in this case was to significantly increase luminosity of the machine, thereby allowing for very rare processes to be observed. Two super-flavor factories (those machines are really like factories, churning out millions of B-mesons) were proposed, the Belle-II experiment at KEK and a new Super-B factory at the newly-created Cabibbo Lab in Frascatti, Italy. I have already written about the Cabibbo Lab.

It appears, however, that Italian government decided today that it cannot fund the Super-B flavor factory. Tommaso Dorigo reported it in his blog this morning. Here is more hard data: there is a press release (in Italian) from the INFN that basically tells you that “economic conditions… were incompatible with the costs of the project evaluated.” Which is another way of saying that Italian government is not going to fund it. This follows by the news from the PhysicsWorld saying the same thing.

Many physicists have been expressing doubts that the original Super-B plan, which was, in my opinion, very bold, could be executed within the proposed time frame.  Yet, physicists pressed on… that is until this morning’s announcement. Reality of our world sets in — there is not enough money for basic research…
So what’s left? There is still, of course, Belle-II. Moreover, excellent performance of LHCb experiment at CERN (I wrote about that here) leaves us with great hopes. That is, if Nature cooperates…

Share

2 Responses to “Another one bites the dust or “SuperB? What SuperB?””

  1. Is this evidence of the problems in Horizon 2020 funding cuts?

  2. veeramohan says:

    Phenomenological or Logos?: The necessity of introducing half-integral spin goes back experimentally to the results of the Stern–Gerlach experiment.
    It is dark matter or anti matter, the mathematics involved to connect them with intuition is tricky and historical.

    E = ± √p²c² + m² c^4 :
    In 1928, Paul Dirac solved the problem: he wrote down an equation, which combined quantum theory and special relativity, to describe the behaviour of the electron. Dirac’s equation won him a Nobel Prize in 1933, but also posed another problem: just as the equation x2=4 can have two possible solutions (x=2 OR x=-2), so Dirac’s equation could have two solutions, one for an electron with positive energy, and one for an electron with negative energy. But in classical physics (and common sense!), the energy of a particle must always be a positive number!

    The equation also implied the existence of a new form of matter, antimatter, hitherto unsuspected and unobserved, and actually predated its experimental discovery. It also provided a theoretical justification for the introduction of several-component wave functions in Pauli’s phenomenological theory of spin. Although Dirac did not at first fully appreciate what his own equation was telling him, …

    “his resolute faith in the logic of mathematics as a means to physical reasoning”,

    ….. his explanation of spin as a consequence of the union of quantum mechanics and relativity, and the eventual discovery of the positron, represents one of the great triumphs of theoretical physics, fully on a par with the work of Newton, Maxwell, and Einstein before him.

    http://www.youtube.com/watch?feature=player_detailpage&v=yidNdyECy_k

Leave a Reply

Commenting Policy