• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USA

Latest Posts

Archive for 2012

There are probably only three generations of matter. Why is this? How do we know? That would happen if there was a fourth generation? The Z boson holds the answers!

Plot taken from http://pdg.lbl.gov/2012/reviews/rpp2012-rev-cross-section-plots.pdf


The discovery of the J/Psi in 1974 changed the world of particle physics forever! The discovery of the fourth quark was great evidence in support of the quark model of hadrons and Cabibbo’s quark mixing.


What’s the deal with the X(3872)? Why are we still finding new mesons at low mass? There’s still new physics to be found at lower energies!

Apologies to CDF for not mentioning them by name, they saw a very clear signal for the X(3872) as well!

Some excellent talks on the X(3872) can be found in the Charm 2010 conference: http://indico.ihep.ac.cn/conferenceOtherViews.py?view=standard&confId=1452

I’m still playing catch-up! More to come tomorrow.


15 is for… erm… T-violation. Why does time prefer one direction over the other? We don’t know the full answer, but we do have some hints from the quark sector.

Paper on the arXiv: http://arxiv.org/abs/1207.5832


14 is for 14TeV, what we had planned for the LHC. So this video is all about how we glimpsed into the distant and not so distant future of particle physics. We need to keep looking ahead, the LHC is not the end of the journey!

Some links from the CERN public page about the accelerator complex and history:
Accelerator complex:


It’s a wrap: proton Run 1 ends

Sunday, December 16th, 2012

On Monday at 6 AM CERN time, the LHC ended its collisions of protons for 2012, and in fact until 2015, when the “long shutdown” for energy upgrades is completed. [There will be heavy-ion collisions in early 2013, but the details are beyond my expertise.] Here’s what appeared on the LHC status screen:

It’s the end of an era for the LHC, the end of what we might someday call “Run 1”, the period of first beams at (relatively) low energies, when we got our first glimpse of a new energy scale, and gathered just enough data to see the first glimmerings of (maybe) the Higgs boson. Considering how long we waited for the start of Run 1 — nearly twenty years from the first concepts for the the LHC and its detectors — it is rather amazing that we’re now at the end of the run, after a mere three years.

Still, it’s been a great three years. Here is the plot that captures the whole story:

LHC integrated luminosity summary

This is the integrated luminosity recorded by CMS, essentially the number of collisions that the experiment observed, year by year. Remember all the excitement of the first data in 2010? That turned out to be a tiny amount of data compared to what we have recorded since; while we made very good use of it at the time, it was just hinting at the future success of the LHC. And even after the great advances in 2011, by the start of June 2012 we had recorded more data this year than we had in all of last year. Once again, all the experimenters thank the LHC team for the excellent performance of this still new machine.

The last few days of the proton run were spent looking towards the future. Since there won’t be any more proton collisions for two years, it’s important to do some tests that can guide our thinking about how to operate the LHC in 2015. So far, the LHC has run with “50 ns bunch spacing”; that is, the minimum time between bunch crossing is 50 nanoseconds. (Remember, the LHC beam is not continuous, but “bunched”, with a large number of protons close together in the beam, followed by a 50-foot gap before the next bunch in the beam.) This week, the LHC experimented with 25 ns bunch spacing, and even allowed the experiments to take a little bit of data in this mode on Saturday night and Sunday morning. Obviously, with the shorter bunch spacing, you can have beam collisions happening twice as often, and that means that you could potentially achieve the same total number of collisions with fewer protons per bunch. That’s good for the experiments, as each event that we record will have fewer collisions in it, making it easier for us to reconstruct what went on. With 25 ns spacing, we’d probably need less computing capacity and calibration and the like would be easier. But from the accelerator perspective, it is easier to operate the LHC with 50 ns spacing, and the machine operators can’t guarantee that they could provide as much integrated luminosity at 25 ns spacing as the could with 50 ns. Thus, it was important to take some time to understand how to operate the LHC this way. It’s ultimately up to the LHC managers to decide what the best mode for operations is. From the experiment side, it would be easier for us to have 25 ns spacing, but we wouldn’t want to do that at the cost of less data, and perhaps missing a chance of a discovery as a results.

Meanwhile, what does a 3000-member collaboration do with itself when there is no data to record? (Besides sending and reading email.) Quite a lot. First, there are a number of upgrades, repairs and improvements to be made on the detector in the next two years. There is a carefully choreographed dance to be performed in the collision hall, where the CMS detector must be opened up for access to the different components, and the schedule for all the work to be done could be pretty tight. There are also preparations to be made for how we analyze the data in 2015. The environment will be a lot like in 2010: we’ll be at a new beam energy, and in a physics environment that we’ve never seen before, so we’ll have to be ready for anything that might appear in the data. And we will continue our studies of the fabulous three years of data already recorded. During the past three years, the collaborations have released multiple papers on particular topics, with increases in the amounts of data analyzed each time and improvements in analysis techniques. But the next round of papers will use the full dataset, and there won’t be any “next” papers. The analysis techniques then must be the best possible; there won’t be another shot for improvements, as the next word will be the final word, at least until 2015. This too will take a lot of effort from the scientists.

Congratulations to everyone on a successful Run 1, and let’s look ahead to a busy shutdown and an exciting Run 2 beyond!


13 is for… well 13 squared is 169, which is almost 173.5, which is for the mass of the top quark in GeV. So let’s talk about the top quark!


The 12 days of Higgsmas! I can’t sing, but I made this anyway. Enjoy!

Images taken from:
Bubble chamber, Interactions, http://www.interactions.org/cms/?pid=2100&image_no=CE0057

Marie Curie, Wiki, http://en.wikipedia.org/wiki/Marie_Curie
Positron, Wiki, http://en.wikipedia.org/wiki/Positron
J/Psi, Duke, http://www.phy.duke.edu/~mehen/ECT/talks.html
SuperKRings, UC Irvine, http://www.ps.uci.edu/~tomba/sk/tscan/pictures.html
sin2beta, Imperial, http://www3.imperial.ac.uk/highenergyphysics/research/experiments/babar
ALEPH & CDF, Fermilab, http://home.fnal.gov/~skands/plain.html
HERA, DESY, http://hasylab.desy.de/images/content/e8/e72/index_eng.html
Higgs & Englert, ATLAS, http://www.atlas.ch/photos/collaboration-meetings.html
Feynman, http://www.richard-feynman.net/gallery.htm
Thomson, MaNEP, http://www.manep.ch/en/technological-challenges/nanotubes.html
SLAC, Fermilab, http://www.fnal.gov/pub/today/archive_2004/today04-06-18.html
Bevatron, Wiki, http://en.wikipedia.org/wiki/File:Bevatron.jpg

Omega discovery, CERN, http://teachers.web.cern.ch/teachers/archiv/HST2001/bubblechambers/omegaminus.pdf

UTFit, http://utfit.org/UTfit/
CKMFitter, http://ckmfitter.in2p3.fr/www/results/plots_moriond12/ckm_res_moriond12.html

Gluon discovery at PETRA, ICEPP Tokyo, http://www.icepp.s.u-tokyo.ac.jp/news/epsprize-e.html

7TeV collision CMS, CMS, http://cms.web.cern.ch/news/new-two-particle-correlations-observed-cms-detector-lhc
7TeV collision LHCB, CERN Courier, http://cerncourier.com/cws/article/cern/42331
7TeV collision ATLAS, http://www.atlas.ch/photos/events-collision-proton.html
LHC Control Room, CERN Bulletin, http://cdsweb.cern.ch/record/1246424
Lumi, CMS, http://cms.web.cern.ch/news/summary-2011-p-p-running

R plots, PDG, http://pdg.lbl.gov/2012/figures/figures.html
Top quark, Cornell, http://www.lepp.cornell.edu/Research/EPP/CMS/CornellCMSPhysics.html

ATLAS events, ATLAS,http://www.atlas.ch/photos/events-collision-proton.html
CMS events, CMS, http://cms.web.cern.ch/news/cms-search-standard-model-higgs-boson-lhc-data-2010-and-2011

ATLAS, ATLAS, http://atlas.ch/atlas_photos/fulldetector/fulldetector_02.html
CMS, ExtremeTech, http://www.extremetech.com/extreme/140513-cern-the-higgs-boson-unfortunately-is-behaving-exactly-as-we-expected
LHCb, Fermilab Today, http://www.fnal.gov/pub/today/archive_2007/today07-07-05.html
ALICE, ALICE, http://aliceinfo.cern.ch/Public/Welcome.html

Line width plot, ALEPH, Delphi, L3 , OPAL and SLD, http://arxiv.org/pdf/hep-ex/0509008v3.pdf
OPAL event display, Cambridge University, http://www.hep.phy.cam.ac.uk/drw/pix/opalpics.html
Delphi event display, Delphi, http://delphiwww.cern.ch/delfigs/export/pubdet4.html

Liquid crystals viewed with polarized light, about.com, http://chemistry.about.com/od/growingcrystals/ig/Crystal-Photo-Gallery/Liquid-Crystals.-MuZ.htm

CMS plots, CMS, http://cms.web.cern.ch/news/observation-new-particle-mass-125-gev
ATLAS plots, ATLAS, http://www.atlas.ch/news/2012/latest-results-from-higgs-search.html

Everything else: Made on my laptop with SVG, PHP, Powerpoint and patience


Alors que le Grand Collisionneur de Hadrons (LHC) se prépare à fermer pour les fêtes de fin d’année, les expériences du LHC ont présenté jeudi matin un résumé portant sur les trois dernières années d’opération. Pour CMS et ATLAS, le point saillant était bien sûr la découverte de ce qui ressemble de plus en plus au boson de Higgs.

Cette découverte ne fait plus aucun doute. Comme Sara Bolognesi, représentante de CMS l’a expliqué : « Le signal est si fort qu’une erreur  est aussi improbable que jouer à pile ou face 40 fois de suite et d’obtenir pile à tous les coups ». Marumi Kado, parlant pour ATLAS, a souligné que le signal est maintenant tellement fort, qu’un seul canal de désintégration suffit pour clamer une découverte.

Les efforts sont donc maintenant concentrés sur l’identification de cette nouvelle particule par l’étude détaillée de ses propriétés.

ATLAS a montré ses tous premiers résultats sur les valeurs de spin et parité du nouveau boson. La parité semble fort être positive, tel que prédit par le Modèle Standard de la physique des particules pour le boson de Higgs, tout comme CMS l’avait aussi observé.

Toutefois, le doute demeure sur la valeur de spin, bien que la valeur de 0, celle prévue par le Modèle Standard, soit privilégiée. Une valeur de 2 demeure cependant encore possible. On aura une meilleure idée une fois que toutes les données recueillies cette année, soit 23 femtobarns inverse, auront été analysées. Ces nouveaux résultats sont attendus pour la conférence de Moriond en début mars.

Alors, quoi de neuf sur ce qui ressemble maintenant à s’y méprendre au boson de Higgs ? CMS a regardé si ils pouvaient trouver des Higgs se désintégrant en un boson Z et un photon. Certaines théories allant au-delà du Modèle Standard en prévoient beaucoup alors que cela devrait être rare selon le Modèle Standard. Tout semble normal mais c’est une avenue prometteuse.

Quelques résultats laissent cependant les chercheurs et chercheuses perplexes. Par exemple, ATLAS mesure deux valeurs de masse différentes pour la même particule selon le canal de désintégration utilisé pour la mesurer. Chaque canal de désintégration représente une des façons par laquelle le boson peut se désintégrer, un peu comme les différentes façons de faire la monnaie pour une pièce d’un euro.

Seuls deux canaux permettent de mesurer la masse avec précision mais la masse mesurée diffère selon que le Higgs se désintègre en deux photons ou en quatre leptons. Qu’on utilise des pièces de cinquante, vingt ou dix centimes, la somme devrait toujours donner un euro. En ce moment, c’est un peu comme si ATLAS obtient 1.05 et 0.95 euro en additionnant toutes les pièces, malgré recomptages et vérifications détaillées.

Cela vient fort probablement d’une variation statistique puisqu’il n’y a qu’une seule valeur dans la combinaison globale. Mais on aura besoin de plus de données que ce que l’on possède à l’heure actuelle pour en avoir le cœur net. Les chercheurs-ses de CMS obtiennent la même masse dans les deux canaux mais ils doivent encore inclure plus de données pour le canal à deux photons.

Autre fait intrigant : les deux expériences obtiennent plus de bosons de Higgs se désintégrant en deux photons que ce que la théorie prédit. J’ai compilé tous les résultats dans le tableau suivant pour voir où on en est.

Les marges d’erreur sont encore assez grandes ce qui signifie qu’on en aura le mot de la fin qu’avec plus de données. Le LHC se fera refaire une beauté dès mars 2013 et ces travaux se poursuivront jusqu’au début 2015. Il faut bien de la patience pour obtenir réponse à ses questions en physique des particules !

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution




Wrapping it up on the Higgs boson

Friday, December 14th, 2012

As the Large Hadron Collider (LHC) is preparing to shut down for the end of the year holidays, the LHC experiments presented on Thursday morning a summary of the last three years of operation. For CMS and ATLAS, the highlight was of course the discovery of what looks more and more like the Higgs boson.

The certainty for the presence of a new boson has been reinforced. As Sara Bolognesi, speaking on behalf of the CMS collaboration, put it: “The signal is so strong, the probability of having it wrong is as low as the chance of flipping a coin 40 times and getting 40 heads in a row”. Marumi Kado, representing ATLAS, showed that even when using a single decay channel, the signal is strong enough to claim a discovery. Hence, the focus is now on finding the exact properties of this new boson to reveal its identity.

ATLAS showed their first results on the spin and parity of the new boson. The parity seems positive, as expected for the Standard Model Higgs boson, reaching the same observation as CMS. But the jury is still out on the value of its spin although the results are more compatible with 0, the value expected by the Standard Model, but a value of 2 is still possible. A clearer answer might come once the 23 inverse femtobarns of data delivered this year by the LHC will have been processed and combined for the two experiments.

What’s new on the more-and-more-Higgs-like new boson? CMS showed the first results on a Higgs boson decaying into a Z boson and a photon. This decay channel should be very small unless there are contributions from processes predicted by theories going beyond the Standard Model, and these could be huge. Nothing is seen so far but this is a promising avenue.

A few facts are nevertheless puzzling. For example, ATLAS measures two different masses when the Higgs decays to two photons as opposed to four leptons, the two decay channels giving the best precision on the mass measurement.

Each one of these decay channels represents one way the Higgs boson can break apart. It is very much like making change for one dollar. No matter if you give the change with coins of ten, twenty or fifty cents, the total sum should always add up to one dollar. As it stands, it is as if ATLAS obtains $1.05 and $0.95 when adding up all the coins, despite having checked each channel with extreme scrutiny for a possible mistake.

This is most likely due to a statistical fluctuation since the data gives only one mass value in the global combination but it might take more data than is at hand to resolve this apparent discrepancy. CMS obtains similar masses in both channels but the results need to be updated with more data for the two-photon channel.

Another slightly intriguing fact: both experiments measure more Higgs boson decays into two photons than what is predicted by the Standard Model. I summarized the situation in the table below.

The error margins are still fairly large which means more data will be needed to sort it all out. The LHC will undergo a major upgrade starting in March 2013, to restart at higher luminosity and higher energy beginning of 2015.  It takes a lot of patience to do high energy physics!

Pauline Gagnon

To be alerted of new postings, follow me on Twitter: @GagnonPauline or sign-up on this mailing list to receive and e-mail notification.