Voici le dernier d’une série de trois volets sur la supersymétrie, la théorie qui pourrait aller au-delà du Modèle Standard. J’ai expliqué dans un premier temps ce qu’est le Modèle standard et montré ses limites. Puis dans un deuxième volet, j’ai présenté la supersymétrie et expliqué comment elle pourrait résoudre plusieurs lacunes du Modèle standard. Finalement, je passe ici en revue comment les physicien-ne-s essaient de découvrir des « superparticules » au Grand collisionneur de hadrons (LHC) du CERN.
Si la supersymétrie (ou SUSY pour les intimes) est aussi miraculeuse que prédite, pourquoi aucune nouvelle particule supersymétrique n’a t-elle été trouvée à ce jour ? Il pourrait y avoir beaucoup de raisons, la plus simple étant que cette théorie soit fausse et les particules supersymétriques n’existent tout simplement pas. Si c’était le cas, on devrait alors trouver une alternative pour parer aux lacunes du Modèle standard.
Mais SUSY est toujours une solution plausible et ses particules supersymétriques ont pu nous échapper pour d’autres raisons. Peut-être avons nous regardé au mauvais endroit ou de la mauvaise façon. Ou encore elles pourraient être hors de portée de nos accélérateurs.
Mais au fait où et comment cherche-t-on des particules supersymétriques ? Le Grand collisionneur de hadrons (LHC) CERN est l’endroit idéal. Cet accélérateur de 27 km de longueur est le plus puissant au monde. Il provoque des collisions entre des protons lancés à une vitesse proche de celle de la lumière. Ces collisions produisent des quantités d’énergie énormes concentrés en de minuscules points de l’espace. Puisque l’énergie et la matière sont deux formes d’une même essence, comme l’eau et la glace, l’énergie libérée se matérialise sous forme de particules fondamentales. Il est donc possible de créer certaines de ces particules supersymétriques au LHC.
Malheureusement, personne ne connaît la masse de toutes ces nouvelles particules. Et sans la masse, c’est un peu comme chercher quelqu’un dans une grande ville sans connaître son adresse. Il faudrait alors ratisser la ville pour découvrir cette personne. Mais imaginez la tâche si vous ne savez même pas à quoi la personne ressemble, comment elle se comporte, ni même la ville ou le pays elle habite.
La supersymétrie est en fait une théorie comportant de nombreux paramètres libres. Ces paramètres représentent des quantités comme les masses des particules supersymétriques ou leurs couplages, c’est-à-dire la probabilité qu’elles se désintègrent en d’autres particules. La supersymétrie ne spécifie pas quelles valeurs ces quantités peuvent prendre.
Les théoricien-ne-s doivent donc faire des suppositions pour réduire la zone de recherches. C’est ainsi que divers modèles de supersymétrie sont apparus. Chaque modèle représente une tentative pour circonscrire la zone de recherche basée sur des suppositions différentes.
Une hypothèse populaire consiste à supposer qu’une certaine propriété appelée la parité R est conservée. C’est le cas pour le modèle minimal de SUSY mais il conserve tout de même 105 paramètres libres. Mais de cette simple supposition surgit une particule de SUSY ayant les caractéristiques de la matière sombre.
Voici comment ça marche : la conservation de R-parité stipule que toutes les particules supersymétriques doivent se désintégrer en d’autres particules supersymétriques. Par conséquent, la particule supersymétrique la plus légère, le LSP (de l’acronyme anglais Lightest Supersymmetric Particle) ne peut se désintégrer en rien d’autre et reste stable. Elle existe pour toujours, comme les particules de matière sombre. Le LSP pourrait donc être la particule de matière sombre tant recherchée.
Comment le Grand collisionneur de hadrons peut-il aider? Autour de l’accélérateur, de grands détecteurs agissent comme des appareils photo géants, enregistrant comment les particules nouvellement créées et fortement instables se brisent, créant de mini feux d’artifice. Ces clichés permettent d’enregistrer l’origine, la direction et l’énergie de chaque fragment et ainsi reconstruire la particule initiale.
Des particules de SUSY lourdes et instables se désintégreraient en cascade, produisant diverses particules du Modèle standard en chemin. Le LSP serait la dernière étape possible pour n’importe quelle chaîne de désintégration. Généralement, le LSP est un des états de SUSY mélangés sans charge électrique appelée neutralino. Au final, chaque événement supersymétrique contiendrait une particule stable, qui n’interagirait pas avec nos détecteurs. On observerait donc un déséquilibre dans la quantité d’énergie de tous ces événements, indiquant qu’une particule s’est échappée du détecteur sans laisser de signaux dans les diverses couches du détecteur.
Au LHC, les physicien-ne-s des expériences CMS et ATLAS ont trié des milliards d’événements à la recherche de tels événements, mais en vain. Des douzaines d’approches différentes ont été testées et de nouvelles possibilités sont constamment explorées. Chacune correspond à une hypothèse différente, mais rien n’a encore été trouvé.
Deux événements contenant des gerbes de particules captés par le détecteur ATLAS. (A gauche) un événement très courant contenant deux gerbes de particules. L’événement est équilibré en énergie, tous les fragments ont été enregistrés, aucune énergie ne manque. (A droite) une simulation d’un événement contenant une seule gerbe reculant contre quelque chose qui échappe au détecteur. Le déséquilibre dans l’énergie serait la signature d’une particule de matière sombre comme la particule supersymétrique la plus légère (LSP), une particule qui emporterait une certaine quantité d’énergie, mais n’interagirait pas avec le détecteur et que l’on ne verrait donc pas.
Il se peut aussi que toutes les particules supersymétriques soient trop lourdes pour avoir été produites par le LHC. Une particule peut être créée seulement si suffisamment d’énergie est disponible. On ne peut pas acheter quelque chose qui coûte plus que ce que l’on a dans sa poche. Pour créer des particules lourdes, il faut plus d’énergie. Il est donc toujours possible que toutes les particules de SUSY existent, mais qu’elles soient hors de la portée actuelle de l’accélérateur du LHC. Mais on en saura plus en 2015 quand le LHC reprendra du service à plus haute énergie, passant de 8 TeV à au moins 13 TeV.
Si les particules de SUSY sont assez légères pour être créé à 13 TeV, leurs chances de production seront aussi décuplées, les rendant encore plus facile à trouver. Et si nous ne les trouvons toujours pas, de nouvelles limites seront atteintes, ce qui permettra de se concentrer sur les modèles possibles restants.
SUSY n’a pas encore dit son dernier mot. Il reste de bonnes chances pour que des particules supersymétriques apparaissent quand le LHC redémarrera. Et si c’était le cas, ce serait aussi extraordinaire que la découverte d’un tout nouveau continent.
Pauline Gagnon
Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution
Tags: CERN, LHC, supersymétrie