• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USA

Latest Posts

Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Archive for April, 2014

A version of this article appeared in symmetry on April 8, 2014.

Physicist Aaron Chou keeps the Holometer experiment—which looks for a phenomenon whose implications border on the unreal—grounded in the realities of day-to-day operations. Photo: Reidar Hahn

Physicist Aaron Chou keeps the Holometer experiment—which looks for a phenomenon whose implications border on the unreal—grounded in the realities of day-to-day operations. Photo: Reidar Hahn

The beauty of the small operation—the mom-and-pop restaurant or the do-it-yourself home repair—is that pragmatism begets creativity. The industrious individual who makes do with limited resources is compelled onto paths of ingenuity, inventing rather than following rules to address the project’s peculiarities.

As project manager for the Holometer experiment at Fermilab, physicist Aaron Chou runs a show that, though grandiose in goal, is remarkably humble in setup. Operated out of a trailer by a small team with a small budget, it has the feel more of a scrappy startup than of an undertaking that could make humanity completely rethink our universe.

The experiment is based on the proposition that our familiar, three-dimensional universe is a manifestation of a two-dimensional, digitized space-time. In other words, all that we see around us is no more than a hologram of a more fundamental, lower-dimensional reality.

If this were the case, then space-time would not be smooth; instead, if you zoomed in on it far enough, you would begin to see the smallest quantum bits—much as a digital photo eventually reveals its fundamental pixels.

In 2009, the GEO600 experiment, which searches for gravitational waves emanating from black holes, was plagued by unaccountable noise. This noise could, in theory, be a telltale sign of the universe’s smallest quantum bits. The Holometer experiment seeks to measure space-time with far more precision than any experiment before—and potentially observe effects from those fundamental bits.

Such an endeavor is thrilling—but also risky. Discovery would change the most basic assumptions we make about the universe. But there also might not be any holographic noise to find. So for Chou, managing the Holometer means building and operating the apparatus on the cheap—not shoddily, but with utmost economy.

Thus Chou and his team take every opportunity to make rather than purchase, to pick up rather than wait for delivery, to seize the opportunity and take that measurement when all the right people are available.

“It’s kind of like solving a Rubik’s cube,” Chou says. “You have an overview of every aspect of the measurement that you’re trying to make. You have to be able to tell the instant something doesn’t look right, and tell that it conflicts with some other assumption you had. And the instant you have a conflict, you have to figure out a way to resolve it. It’s a lot of fun.”

Chou is one of the experiment’s 1.5 full-time staff members; a complement of students rounds out a team of 10. Although Chou is essentially the overseer, he runs the experiment from down in the trenches.

Aaron Chou, project manager 
for Fermilab’s Holometer, tests the experiment’s instrumentation. Photo: Reidar Hahn

Aaron Chou, project manager 
for Fermilab’s Holometer, tests the experiment’s instrumentation. Photo: Reidar Hahn

The Holometer experimental area, for example, is a couple of aboveground, dirt-covered tunnels whose walls don’t altogether keep out the water after a heavy rain. So any time the area needs the attention of a wet-dry vacuum, he and his team are down on the ground, cheerfully squeegeeing, mopping and vacuuming away.

“That’s why I wear such shabby clothes,” he says. “This is not the type of experiment where you sit behind the computer and analyze data or control things remotely all day long. It’s really crawling-around-on-the-floor kind of work, which I actually find to be kind of a relief, because I spent more than a decade sitting in front of a computer for more well-established experiments where the installation took 10 years and most of the resulting experiment is done from behind a keyboard.”

As a graduate student at Stanford University, Chou worked on the SLD experiment at SLAC National Accelerator Laboratory, writing software to help look for parity violation in Z bosons. As a Fermilab postdoc on the Pierre Auger experiment, he analyzed data on ultra-high-energy cosmic rays.

Now Chou and his team are down in the dirt, hunting for the universe’s quantum bits. In length terms, these bits are expected to be on the smallest scale of the universe, the Planck scale: 1.6 x 10-35 meters. That’s roughly 10 trillion trillion times smaller than an atom; no existing instrument can directly probe objects that small. If humanity could build a particle collider the size of the Milky Way, we might be able to investigate Planck-scale bits directly.

The Holometer instead will look for a jitter arising from the cosmos’ minuscule quanta. In the experiment’s dimly lit tunnels, the team built two interferometers, L-shaped configurations of tubes. Beginning at the L’s vertex, a laser beam travels down each of the L’s 40-meter arms simultaneously, bounces off the mirrors at the ends and recombines at the starting point. Since the laser beam’s paths down each arm of the L are the same length, absent a holographic jitter, the beam should cancel itself out as it recombines. If it doesn’t, it could be evidence of the jitter, a disruption in the laser beam’s flight.

And why are there two interferometers? The two beam spots’ particular brightening and dimming will match if it’s the looked-for signal.

“Real signals have to be in sync,” Chou says. “Random fluctuations won’t be heard by both instruments.”

Should the humble Holometer find a jitter when it looks for the signal—researchers will soon begin the initial search and expect results by 2015—the reward to physics would be extraordinarily high, especially given the scrimping behind the experiment and the fact that no one had to build an impossibly high-energy, Milky Way-sized collider. The data would support the idea that the universe we see around us is only a hologram. It would also help bring together the two thus-far-irreconcilable principles of quantum mechanics and relativity.

“Right now, so little experimental data exists about this high-energy scale that theorists are unable to construct any meaningful models other than those based on speculation,” Chou says. “Our experiment is really a mission of exploration—to obtain data about an extremely high-energy scale that is otherwise inaccessible.”

What’s more, when the Holometer is up and running, it will be able to look for other phenomena that manifest themselves in the form of high-frequency gravitational waves, including topological defects in our cosmos—areas of tension between large regions in space-time that were formed by the big bang.

“Whenever you design a new apparatus, what you’re doing is building something that’s more sensitive to some aspect of nature than anything that has ever been built before,” Chou says. “We may discover evidence of holographic jitter. But even if we don’t, if we’re smart about how we use our newly built apparatus, we may still be able to discover new aspects of our universe.”


I’ve just been watching the first couple of episodes of the new, reborn, perhaps rebooted, Cosmos. About 4 million people have been watching each of the episodes when broadcast. Out of a US population of about 300 million. Said that way, it doesn’t sound like a huge success, but science has much less of a grip on the American public than science fiction (or at least folks in spandex hitting each other over the head) or comedy about scientists. Over the years, it’s said that Sagan’s Cosmos has been the most watched PBS series world-wide, ever, and I have confidence that the new one, with current special effects, and its hooks to the 2010s rather than the late 1970s, will be watched for many years to come.

Different times and different shows. It’s worth thinking about why this isn’t a PBS show today. Why is that? And why are there still creationists around to poke holes in our schools?

Anyway, what I’ve seen so far, I’ve liked quite a bit. There are plenty of eloquent positive reviews out there, so let me highlight one thing of which I am not a fan. With the excellent special effects, along with the excellent astronomical images available, it’s not always clear in the show what is a real image and what is artwork. In Sagan’s Cosmos, we see visualizations and we see telescopic views, and we can know which is which. With the current Cosmos, it’s a lot harder to tell. And a third category, simulations also poke in somewhere between the models and true imaging. Simulations based on the physics, so therefore “true” and “correct,” but not real images of objects in the sky. I’ve seen NASA artist renditions clearly marked in the corner. It would be a nice addition to the show, not to justify the scientific validity but to clarify, to mark the boundaries of what we see, what we know, and what we conjecture. Three different parts of the science.


Even before my departure to La Thuile in Italy, results from the Rencontres de Moriond conference were already flooding the news feeds. This year’s Electroweak session from 15 to 22 March, started with the first “world measurement” of the top quark mass, from a combination of the measurements published by the Tevatron and LHC experiments so far. The week went on to include a spectacular CMS result on the Higgs width.

Although nearing its 50th anniversary, Moriond has kept its edge. Despite the growing numbers of must-attend HEP conferences, Moriond retains a prime spot in the community. This is in part due to historic reasons: it’s been around since 1966, making a name for itself as the place where theorists and experimentalists come to see and be seen. Let’s take a look at what the LHC experiments had in store for us this year…

New Results­­­

Stealing the show at this year’s Moriond was, of course, the announcement of the best constraint yet of the Higgs width at < 17 MeV with 95% confidence reported in both Moriond sessions by the CMS experiment. Using a new analysis method based on Higgs decays into two Z particles, the new measurement is some 200 times better than previous results. Discussions surrounding the constraint focussed heavily on the new methodology used in the analysis. What assumptions were needed? Could the same technique be applied to Higgs to WW bosons? How would this new width influence theoretical models for New Physics? We’ll be sure to find out at next year’s Moriond…

The announcement of the first global combination of the top quark mass also generated a lot of buzz. Bringing together Tevatron and LHC data, the result is the world’s best value yet at 173.34 ± 0.76 GeV/c2.  Before the dust had settled, at the Moriond QCD session, CMS announced a new preliminary result based on the full data set collected at 7 and 8 TeV. The precision of this result alone rivals the world average, clearly demonstrating that we have yet to see the ultimate attainable precision on the top mass.

ot0172hThis graphic shows the four individual top quark mass measurements published by the ATLAS, CDF, CMS and DZero collaborations, together with the most precise measurement obtained in a joint analysis.

Other news of the top quark included new LHC precision measurements of its spin and polarisation, as well as new ATLAS results of the single top-quark cross section in the t-channel presented by Kate Shaw on Tuesday 25 March. Run II of the LHC is set to further improve our understanding of this

A fundamental and challenging measurement that probes the nature of electroweak symmetry breaking mediated by the Brout–Englert–Higgs mechanism is the scattering of two massive vector bosons against each other. Although rare, in the absence of the Higgs boson, the rate of this process would strongly rise with the collision energy, eventually breaking physical law. Evidence for electroweak vector boson scattering was detected for the first time by ATLAS in events with two leptons of the same charge and two jets exhibiting large difference in rapidity.

With the rise of statistics and increasing understanding of their data, the LHC experiments are attacking rare and difficult multi-body final states involving the Higgs boson. ATLAS presented a prime example of this, with a new result in the search for Higgs production in association with two top quarks, and decaying into a pair of b-quarks. With an expected limit of 2.6 times the Standard Model expectation in this channel alone, and an observed relative signal strength of 1.7 ± 1.4, the expectations are high for the forthcoming high-energy run of the LHC, where the rate of this process is enhanced.

Meanwhile, over in the heavy flavour world, the LHCb experiment presented further analyses of the unique exotic state X(3872). The experiment provided unambiguous confirmation of its quantum numbers JPC to be 1++, as well as evidence for its decay into ψ(2S)γ.

Explorations of the Quark-Gluon Plasma continue in the ALICE experiment, with results from the LHC’s lead-proton (p-Pb) run dominating discussions. In particular, the newly observed “double-ridge” in p-Pb is being studied in depth, with explorations of its jet peak, mass distribution and charge dependence presented.

New explorations

Taking advantage of our new understanding of the Higgs boson, the era of precision Higgs physics is now in full swing at the LHC. As well as improving our knowledge of Higgs properties – for example, measuring its spin and width – precise measurements of the Higgs’ interactions and decays are well underway. Results for searches for Beyond Standard Model (BSM) physics were also presented, as the LHC experiments continue to strongly invest in searches for Supersymmetry.

In the Higgs sector, many researchers hope to detect the supersymmetric cousins of the Higgs and electroweak bosons, so-called neutralinos and charginos, via electroweak processes. ATLAS presented two new papers summarising extensive searches for these particles. The absence of a significant signal was used to set limits excluding charginos and neutralinos up to a mass of 700 GeV – if they decay through intermediate supersymmetric partners of leptons – and up to a mass of 420 GeV – when decaying through Standard Model bosons only.

Furthermore, for the first time, a sensitive search for the most challenging electroweak mode producing pairs of charginos that decay through W bosons was conducted by ATLAS. Such a mode resembles that of Standard Model pair production of Ws, for which the currently measured rates appear a bit higher than expected.

In this context, CMS has presented new results on the search for the electroweak pair production of higgsinos through their decay into a Higgs (at 125 GeV) and a nearly massless gravitino. The final state sports a distinctive signature of 4 b-quark jets compatible with a double Higgs decay kinematics. A slight excess of candidate events means the experiment cannot exclude a higgsino signal. Upper limits on the signal strength at the level of twice the theoretical prediction are set for higgsino masses between 350 and 450 GeV.

In several Supersymmetry scenarios, charginos can be metastable and could potentially be detected as a long-lived particle. CMS has presented an innovative search for generic long-lived charged particles by mapping their detection efficiency in function of the particle kinematics and energy loss in the tracking system. This study not only allows to set stringent limits for a variety of Supersymmetric models predicting chargino proper lifetime (c*tau) greater than 50cm, but also gives a powerful tool to the theory community to independently test new models foreseeing long lived charged particles.

In the quest to be as general as possible in the search for Supersymmetry, CMS has also presented new results where a large subset of the Supersymmetry parameters, such as the gluino and squark masses, are tested for their statistical compatibility with different experimental measurements. The outcome is a probability map in a 19-dimension space. Notable observations in this map are that models predicting gluino masses below 1.2 TeV and sbottom and stop masses below 700 GeV are strongly disfavoured.

… but no New Physics

Despite careful searches, the most heard phrase at Moriond was unquestionably: “No excess observed – consistent with the Standard Model”. Hope now lies with the next run of the LHC at 13 TeV. If you want to find out more about the possibilities of the LHC’s second run, check out the CERN Bulletin article: “Life is good at 13 TeV“.

In addition to the diverse LHC experiment results presented, Tevatron experiments, BICEP, RHIC and other experiments also reported their breaking news at Moriond. Visit the Moriond EW and Moriond QCD conference websites to find out more.

Katarina Anthony-Kittelsen


This article originally appeared in symmetry on March 31, 2014.

Three decades ago in March, scientists from Latin America came to do research at Fermilab, forming the ties of a lasting collaboration.

Three decades ago in March, scientists from Latin America came to do research at Fermilab, forming the ties of a lasting collaboration.

In 1983, Fermilab Director Leon Lederman put his money on the table at the second Pan American Symposium on Elementary Particles and Technology in Rio de Janeiro. His daring proposition: If the Brazilian Research Council would not at the time fund that nation’s physicists to do research at Fermilab, he would pay the salaries himself.

His parlay worked. A year later, 30 years ago this month, four physicists from Brazil took paid leave to work on the E691 fixed-target experiment at Fermilab. They were Fermilab’s first Latin American scientists and the beginning of its relationship with the region.

“Lederman made the bold offer in that meeting,” says Carlos Escobar, one of the four trailblazing Brazilians who crossed over the Equator to Fermilab. “That was the deciding factor.”

Mexico soon followed, spearheaded by then Universidad Nacional Autónoma de México professor Clicerio Avilez. The university sent two scientists and a graduate student, the first Latin American student to get his PhD for work done at Fermilab.

Since then, the collaboration between Fermilab and Latin American institutions has grown to also include Argentina, Chile, Colombia, Ecuador and Peru. Twenty-one Latin American institutions participate in the collaboration, which consists of theorists and members of eight experiments: CMS, DAMIC, DZero, LBNE, MINERvA and MINOS, as well as on the Dark Energy Survey and the Pierre Auger Observatory—both of which reside in South America. That’s in addition to the nine fixed-target experiments that completed their runs in the 1990s.

Lederman began planting the seeds of collaboration in 1979, noting that Latin American nations boasted strong scientific groups and an impressive history of innovation.

“Latin America represented a huge potential treasure of human resources which would, I was sure, eventually be devoted to scientific research to the benefit of the nations of South and Central America and, indeed, the world,” he wrote in a 2006 paper.

Since those days, the collaboration with Fermilab, as well as steadily gaining economic strength and higher publicity for science, have placed particle physics research south of the Rio Grande on firmer ground. Fermilab not only provided scientists with particle physics experiments to work on, it also hosted workshops that were attended by Latin American engineers, physicists, technicians and students.

“When I first started, there were only two groups in Mexico cultivating theoretical high-energy physics, and none tilling the field of experimental high-energy physics,” says Julian Felix Valdez, a University of Guanajuato professor whose connection with Fermilab began in 1990, when he was a graduate student. Then, he says, things changed as Universidad Nacional Autónoma de México and Instituto Politécnico Nacional began sending students to Fermilab.

“Thirty years later, there are groups in experimental high-energy physics at eight Mexican universities, as well as other groups emerging at other Mexican universities,” Felix Valdez says. He estimates about 100 Mexican scientists work on particle physics at home and an additional 30 abroad.

The flow of students hasn’t abated, and most now come to Fermilab to work on neutrino research. For future generations, it could mean working on Fermilab’s Long-Baseline Neutrino Experiment.

“There’s a good stream of people. Once the connection’s established, it doesn’t sever. It keeps flowing,” says Pontificia Universidad Católica del Perú master’s student Maria Jose Bustamante, who is on the MINERvA neutrino experiment. “Of course you need an institution to do that.”

Enlisting more institutions to invigorate the flow is perhaps still the biggest challenge facing the collaboration today. To that end, Fermilab’s fifth director, Pier Oddone, and his deputy, Young-Kee Kim, picked up where Lederman left off, says MINERvA scientist Jorge Morfin, one of the founding members of the Latin American collaboration. Oddone and Kim helped formalize the Latin American Initiative in 2010, suggesting more written agreements between Fermilab and Latin American institutions and funding agencies.

“No one on MINERvA would doubt that the contribution of these Latin American students has been significant. This has been a real working benefit for the experiment here at Fermilab,” Morfin says. The number of students that work or have worked on MINERvA totals 24 master’s students, nine doctoral students and two postdocs. “Now they can work on experiments throughout the world. It’s been a nice return, a give and take,” he says.

Collaboration also provides opportunities for visiting scientists to bring technologies from their home countries to Fermilab. Escobar notes that Brazilian companies provided several pieces of instrumentation for Fermilab experiments, including drift chambers and detectors for DZero. It goes the other way, too: Scientists take new technologies developed at Fermilab back to industries at home.

“People see the local industries benefit from this kind of collaboration with a place that does fundamental research,” Morfin says. “It translates into actual progress for local industries and local technology.”

To see another 30 years of flourishing high-energy physics in the western hemisphere requires an investment in physics from both sides of the Equator, Felix Valdez says.

“Physics—especially high-energy physics—is an international task,” he says.

Leah Hesla


April fool’s lands on CERN

Wednesday, April 2nd, 2014

Apart from the usual jokes on Quantum Diaries (See for example the blog posts of Kyle, Byron, Aidan, Alexey), this year’s April fool’s had quite some remarkable ‘fish’ worth mentioning:

On the official website CERN announced they were going to switch to comic sans, featuring a video of ATLAS spokesperson Fabiola Gianotti. The use of comic sans in the slides of the Higgs discovery in 2012 caused quite a commotion.

Also on the CERN website, it was announced that new parking rules will be enforced at all entrance gates, allowing only cars whose digits on the number plate is odd (even) on odd (even) days, respectively. With these new rules it seems to be more advantageous to have an ‘odd’ licence plate (Some months end on 31 which is odd, followed by the first day of the next month, which is odd again).

There is a vacant position for Director General of CERN coming up, you can apply here. In fact, I am not even completely sure whether this is an April fool’s joke or not, is it?

Then there was google, launching an app to catch wild pokemon. Of course, CERN is indicated as a pokelab on the map.

My friend Andri seemed to have written a paper together with Peter Higgs. I wonder how I could have ever overlooked the paper with A. Turing in the references.

Finally, building 27 seemed to have suffered some damage and the coffee will be more expensive as of April 1st (which unfortunately seems not to be a April fool’s joke).

Have I missed any? Please put them in the comments or tweet to @KnoopsRob.

CERN as a pokelab on google's pokemon app

CERN as a pokelab on google’s pokemon app

The coffee will be more expensive as of April 1st (note a joke), thanks to Alex Brown for pointing this out.

The coffee will be more expensive as of April 1st (not a joke), thanks to Alex Brown for pointing this out.

April fool's arrives in Building 27

April fool’s arrives in Building 27


Data recall at the LHC?

Tuesday, April 1st, 2014

In a stunning turn of events, Large Hadron Collider (LHC) management announced a recall and review of thousands of results that came from its four main detectors, ATLAS, CMS, LHCb and ALICE, in the course of the past several years when it learned that the ignition switches used to start the LHC accelerator (see the enclosed image) might have been produced by GM. Image

GM’s CEO, A. Ibarra, who is better known in the scientific world for the famous Davidson-Ibarra bound in leptogenesis, will be testifying on the Capitol Hill today. This new revelation will definitely add new questions to the already long list of queries to be addressed by the embattled CEO. In particular, the infamous LHC disaster that happened almost six years ago on 10 September 2008 and cost taxpayers over 21Million dollars to fix, has long suspected been caused by a magnet quench. However, new data indicate that it might have been caused by too much paper accidentally placed on a switch by a graduate student, who was on duty that day.

“We want to know why it took LHC management more than five years to issue that recall”, an unidentified US Government official said in the interview, “We want to know what is being done to correct the problem. From our side, we do everything humanly possible to accommodate US high energy particle physics researchers and help them to avoid such problems in the future.  For example, we included a 6.6% cut in US HEP funding in the President’s 2015 budget request.” He added, “We suspected that something might be going on at the LHC after it was convincingly proven to us at our weekly seminar that the detected Higgs boson is ‘simply one Xenon atom of the 1 trillion 167 billion 20 million Xenon atoms which there are in the LHC!'”

This is not the first time accelerators cause physicists to rethink their results and designs. For example, last year Japanese scientists had to overcome the problem of unintended acceleration of positrons at their flagship facility KEK.

At this point, it is not clear how GM’s ignition switches problems would affect funding of operations at the National Ignition Facility in Livermore, CA.



The Realineituhedron

Tuesday, April 1st, 2014

Inspired by the deep insights revealed in the recent work around the Amplituhedron, a new and deeper mathematical principle has revealed itself. While the amplituhedron caused quite a buzzeven outside of the world of theoretical particle physics, thus far it is restricted to N=4 supersymmetry. In contrast, this new object is able to represent all known predictions for physical observables. The new object, outlined in a recent paper is being called “The Realineituhedron”.

The key observation is that at the end of the day, everything we measure can be represented as a real number. The paper outlines a particular way of projecting these observations onto the realineituhedron, in which the “volume” Ω of the object represents the value of the observation.

In fact, the physically observable quantity must be a real number, a feature foreshadoewed by the Hermitian postulate of quantum mechanics.

The paper is full of beautiful hand-drawn figures, such as the ones below:

 Is it possible that there is some geometrical object is able to capture the Hermitian nature of these operators–indeed, is it able to represent all fundamental observables?

This masterful work will take some time to digest — it was only released today! One of the most intriguing ideas is that of a “The Master Realineituhedron”, denoted ℝ², in which all realineituhedrons can be embeded.

It would be interesting to see whether this larger space has any interesting role to play in understanding the m = 1 geometry relevant to physics.


[This post was originally posted here]


Recently it has been announce that a smoking gun has been found for cosmic inflation but could it instead be the smoking[1] gun for a grand conspiracy, the mother of all conspiracies, the conspiracy theory to put all other conspiracy theories to shame?  You may have your favourite conspiracy theory: the Roswell cover up, who shot JFK, the suppression of perpetual motion machines by the energy companies or the attempt by communication departments to take over the world. As a professor, once said: “Just because you are paranoid does not mean they are not out to get you.” (Followed closely by my second-best piece of advice, “Never trust a communications expert.”) But the conspiracy I am talking about is on a much larger scale, a cosmic scale, the conspiracy of all elementary particles in the universe to use their free will for the sole purpose of messing with the minds of humans and particularly that subclass of humans known as particle physicists[2]. The professor was right to be paranoid.

We hold these truths to be self-evident, that all particles are created equal and endowed by their Creator with free will. Surely you do not question that elementary particles have free will. Consider the muon. It decays at a time if its own choosing.  There is no rule that says when a given muon will decay. It is decided by the muon in its own stubborn way.  But you still claim that only humans have freewill. Why? Could it not be just of part the grand conspiracy of elementary particle to give humans the illusion of freewill? Besides we all know politicians do not have freewill. They just do, as a Pavlovian reflex, what they think will get them the most votes.  Hence the mess the world is in. But I digress.

To explore further: what criteria is there to decide if a given object has freewill? Is it just unpredictability? If so, then Vancouver weather has freewill. We have already decided that politicians do not have freewill. But what about dogs? Are all their reactions Pavlovian conditioning? Most certainly not.  Hence they are better candidates to have freewill than politicians. And what about cats? Cats certainly have will but it is free?  Does the fact cats cannot be herded indicate they have freewill? And cows, do cows have freewill? Does the fact they can be herded indicate they do not have freewill? Or that plant on my window sill beckoning to be watered?  Does it cause its leaves to droop out of the exercise of its own freewill just to annoy me? Possibly (there it goes again). It seems to me the hallmark of freewill is precisely that combination of random and non-random behaviour found in elementary particles and not in politicians. Hence another interpretations of quantum uncertainty, it is just elementary particles exercising their freewill.

You may be surprised that I claimed all particles are created equal. Surely the neutrino and electron have different properties and are not equal. But that is just them exercising their freewill. Those particles we call electrons have decided (note the verb decided) to behave as if they had a given set of interactions while the neutrinos have decided to be behave like they have a different set of interactions. The interactions, themselves, are illusionary created by the particles exercising their freewill. There was probably a grand council meeting at the beginning of time where the grand conspiracy was initiated and the roles assigned to different sets of particles.  Indeed, it may have been that grand council meeting that started time itself.

The freewill of particles also explains the problem of evil. From earthquakes to global warming[3], the evil consequences are due to particle exercising their freewill. This type of evil could only be eliminated by denying particles freewill­–an even greater evil.

Now back to the initial observation about the polarization of photons in the cosmic microwave background. Surely that polarization is not due to gravitational waves but due to photons exercising their freewill to mislead humans. Is it not more reasonable to assume that the measured polarization[4] is due to freewill than to some far distant interaction with gravitons? (Do gravitons even exits? They have never been directly observed.)

This conspiracy theory–just like all conspiracy theories–accounts for all the known facts and cannot be disproved. It therefore must be correct and we have shown conclusively that it is particles, not people, that have freewill and the photons are trying to mess with our minds[5].

To receive a notice of future posts follow me on Twitter: @musquod.

[1] And no, I have not been smoking with the mayor of certain large Canadian city.

[2] Nuclear physicists have always known that something was messing with the minds of particle physicists.

[3] Global warming is due to particles excising their freewill not carbon dioxide emissions.

[4] But beware the Jennings principle: Most exciting new results are wrong.

[5] This is not the perfect particle physics blog because it does not mention the Higgs boson, the LHC or super symmetry. Oops, maybe now it is.


1st April 2014. The LHC is currently in shutdown in preparation for the next physics run in 2015. However the record breaking accelerator is danger is falling far behind schedule as the engineers struggle with technical difficulties 100m below ground level.

The LHC tunnels house the 27km long particle accelerator in carefully controlled conditions. When the beams circulate they must be kept colder than anywhere else in the solar system, and with a vacuum more empty the voids of outer space. Any disruption to the cryogenic cooling systems or the vacuum systems can place serious strain on the operations timetable, and engineers have found signs of severe damage.

Scientists patrol the LHC, inspecting the damaged areas.

Scientists patrol the LHC, inspecting the damaged areas.

The first indications of problems were identified coming from Sector 7 between areas F and H. Cryogenics expert, Francis Urquhart said “My team noticed dents in the service pipes about 50cm from the floor. There was also a deposit of white fibrous foreign matter on some of the cable trays.” The pipes were replaced, but the damage returned the following day, and small black aromatic samples were found piled on the floor. These were sent for analysis and after chemical tests confirmed that they contained no liquid Helium, and that radiometry found they posed no ionisation risk, they were finally identified as Ovis aries depositions.

Ovis aries are found throughout the CERN site, so on-site contamination could not be ruled out. It is currently thought that the specimens entered the Super Proton Synchrotron (SPS) accelerator and proceeded from the SPS to the LHC, leaving deposits as they went. The expert in charge, Gabriella Oak, could not be reached for comment, but is said to be left feeling “rather sheepish”.

Elsewhere on the ring there was another breach of the security protocols as several specimens of Bovinae were found in the ring. The Bovinae are common in Switzerland and it due to their size, must have entered via one of the service elevators. All access points and elevators at the LHC are carefully controlled using biometry and retinal scans, making unauthorised entry virtually impossible. Upon being asked whether the Bovinae had been seen scanning their retinae at the security checkpoints, Francis Urquhart replied “You might very well think that. I could not possibly comment.” While evidence of such actions cannot be found CCTV footage, there have been signs of chewed cud found on the floor, and Bovinae deposits, which are significantly larger than the Ovis deposits, owing to the difference in size.

The retinal scans at the LHC are designed exclusively for human use. A search of the biometric record database show at least one individual (R Wiggum) with unusual retinae, affiliated to “Bovine University”.

It is not known exactly how much fauna is currently in the LHC tunnels, although it is thought to be at least 25 different specimens. They can be identified by the bells they carry around their necks, which can sound like klaxons when they charge. Until the fauna have been cleared, essential repair work is extremely difficult. “I was repairing some damage caused by a passing cow” said Stanford PhD student Cecilia, “when I thought I heard the low oxygen klaxon. By the time I realised it was just two sheep I had already put on my safety mask and pulled the alarm to evacuate the tunnels.” She then commented “It took us three hours to get access to the tunnels again, and the noises and lights had caused the animals to panic, creating even more damage to clean up.”

This is not the first time a complex of tunnels has been overrun by farm animals. In the early 90s the London Underground was found to be infested with horses, which turned into a longterm problem and took many years to resolve.

Current estimates on the delay to the schedule range from a few weeks to almost a decade. Head of ATLAS operations, Dr Remy Beauregard Hadley, comments “I can’t believe all this has happened. They talk about Bovinae deposits delaying the turn on, and I think it’s just a load of bullshit!”