• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

CNRS-IN2P3 | Paris | France

View Blog | Read Bio

Pour une physique nucléaire accessible à tous

Grégoire Besse, doctorant au CNRS en physique nucléaire théorique, nous confie son intérêt pour la médiation des sciences.

C’est en débutant ma thèse que je me suis aperçu du lien inéluctable entre la recherche et la vulgarisation. J’ai donc progressivement choisi de me lancer dans cette démarche afin d’expliquer mes recherches et de les rendre plus « limpides » pour le commun des mortels. Ma thèse porte sur la physique nucléaire théorique et s’intitule  « Description théorique de la dynamique nucléaire lors des collisions d’ions lourds et ses implications astrophysiques ». Elle se déroule au laboratoire Subatech à Nantes. Je travaille sur la description dynamique d’un système nucléaire, c’est-à-dire des noyaux en collision ou en réseau. Pour cela, le groupe de recherche dont je fais partie a élaboré un code de simulation nommé Dynamical Yavelets in Nuclei (DYWAN). Ce code est déjà opérationnel mais reste en phase d’optimisation.

Exemple de collision à basse énergie entre deux noyaux. On observe que les noyaux se déforment sous l’effet de la force nucléaire pour se coller, jusqu’à atteindre une fusion.

Exemple de collision à basse énergie entre deux noyaux. On observe que les noyaux se déforment sous l’effet de la force nucléaire pour se coller, jusqu’à atteindre une fusion.

La physique nucléaire s’intéresse aux noyaux et aux comportements de la force nucléaire. La force nucléaire, ou interaction forte résiduelle, est l’effet de l’interaction forte (quarks-gluons) à l’échelle nucléaire. Il s’agit de l’interaction nucléon-nucléon. Bien moins médiatisée que la physique des hautes énergies (celle du LHC et du boson de Higgs), la physique nucléaire reste néanmoins un maillon essentiel pour comprendre la matière. De plus, ses applications sont immédiates, comme par exemple avec la radioactivité, la fission, la fusion ou la production de radio-isotopes.

Ma passion au service de mon travail

Aperçu de l’environnement 3D en OpenGL. Il est visitable comme un jeu-vidéo avec clavier-souris. Les noyaux (bleu-rouge et cyan-rose), déjà mêlés, sont représentés par des objets mathématiques : les états cohérents (les boules avec des nuages de points).

Aperçu de l’environnement 3D en OpenGL. Il est visitable comme un jeu-vidéo avec clavier-souris. Les noyaux (bleu-rouge et cyan-rose), déjà mêlés, sont représentés par des objets mathématiques : les états cohérents (les boules avec des nuages de points).

Le but de ma thèse est de fournir un code de simulation puissant capable de reproduire des données et des comportements observés expérimentalement puis de prédire des réactions. Nous nous focalisons sur la collision d’ions lourds qui permettent de produire des systèmes nucléaires très exotiques tels que de la matière très riche en neutrons. D’autres groupes de recherche du laboratoire s’intéressent plutôt aux études de la radioactivité, de la durée de vie et du comportement des noyaux isolés. Ceci me rappelle la métaphore d’Albert Einstein qui expliquait que pour comprendre le fonctionnement d’une montre sans l’ouvrir, vous avez deux solutions : l’observation (écoute, regard, prise de données et émission d’hypothèses) ou l’expérimentation (vous lancez la montre contre un mur, vous regardez les pièces qui sortent et vous essayer de tout remettre en ordre). Nous utilisons plutôt cette deuxième méthode.

Parallèlement à ma thèse, j’essaie de mettre au point un logiciel  alliant recherche et nouvelles technologies (j’en suis arrivé à un environnement 3D visitable avec clavier-souris). Je suis très intéressé par la réalité virtuelle et la réalité augmentée : je pense que ces outils permettront de nouvelles approches dans la recherche, un nouveau point de vue pour une nouvelle théorie. Et cela a déjà fait ses preuves : nous avons débusqué des erreurs sur DYWAN grâce à mon logiciel !

L’oiseau bleu, ami de la recherche

Mon arrivée sur Twitter n’est pas très ancienne, mais très vite j’ai compris que ce réseau social est un outil formidable pour la recherche. Cette dernière est un monde actif en constante évolution, il paraît alors légitime de se tenir informé des avancées car cela fait normalement partie de notre travail. Par ailleurs, Twitter permet un aperçu rapide (- de 140 caractères) des informations importantes.

J’ai découvert le compte @EnDirectDuLabo par hasard : chaque semaine, un scientifique en prend les rênes pour partager son quotidien avec les abonnés. Avec un public potentiel de plus de 2 000 personnes, l’expérience peut être intimidante. Mais finalement, lorsque ce fut mon tour, tout s’est bien passé et j’ai eu des échanges avec un public varié : chercheurs, doctorants, journalistes, community managers, amateurs et autres curieux.

Au final, cette expérience m’a aidé à mieux cerner mon sujet de thèse. De plus, ces « relations » sont très enrichissantes au quotidien : une photo, une phrase, un article, un blog, vive la curiosité et le partage 2.0 !

Share