• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Flip
  • Tanedo
  • USLHC
  • USA

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Laura
  • Gladstone
  • University of Wisconsin, Madison
  • USA

Latest Posts

  • Richard
  • Ruiz
  • Univ. of Pittsburgh
  • U.S.A.

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Michael
  • DuVernois
  • Wisconsin IceCube Particle Astrophysics Center
  • USA

Latest Posts

  • Jim
  • Rohlf
  • USLHC
  • USA

Latest Posts

  • Emily
  • Thompson
  • USLHC
  • Switzerland

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Alexey Petrov | WSU | USA

Read Bio

Data recall at the LHC?

Tuesday, April 1st, 2014

In a stunning turn of events, Large Hadron Collider (LHC) management announced a recall and review of thousands of results that came from its four main detectors, ATLAS, CMS, LHCb and ALICE, in the course of the past several years when it learned that the ignition switches used to start the LHC accelerator (see the enclosed image) might have been produced by GM. Image

GM’s CEO, A. Ibarra, who is better known in the scientific world for the famous Davidson-Ibarra bound in leptogenesis, will be testifying on the Capitol Hill today. This new revelation will definitely add new questions to the already long list of queries to be addressed by the embattled CEO. In particular, the infamous LHC disaster that happened almost six years ago on 10 September 2008 and cost taxpayers over 21Million dollars to fix, has long suspected been caused by a magnet quench. However, new data indicate that it might have been caused by too much paper accidentally placed on a switch by a graduate student, who was on duty that day.

“We want to know why it took LHC management more than five years to issue that recall”, an unidentified US Government official said in the interview, “We want to know what is being done to correct the problem. From our side, we do everything humanly possible to accommodate US high energy particle physics researchers and help them to avoid such problems in the future.  For example, we included a 6.6% cut in US HEP funding in the President’s 2015 budget request.” He added, “We suspected that something might be going on at the LHC after it was convincingly proven to us at our weekly seminar that the detected Higgs boson is ‘simply one Xenon atom of the 1 trillion 167 billion 20 million Xenon atoms which there are in the LHC!’”

This is not the first time accelerators cause physicists to rethink their results and designs. For example, last year Japanese scientists had to overcome the problem of unintended acceleration of positrons at their flagship facility KEK.

At this point, it is not clear how GM’s ignition switches problems would affect funding of operations at the National Ignition Facility in Livermore, CA.

 

Share

And the 2013 Nobel Prize in Physics goes to…

Tuesday, October 8th, 2013

Today the 2013 Nobel Prize in Physics was awarded to François Englert (Université Libre de Bruxelles, Belgium) and Peter W. Higgs (University of Edinburgh, UK). The official citation is “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.” What did they do almost 50 years ago that warranted their Nobel Prize today? Let’s see (for the simple analogy see my previous post from yesterday).

The overriding principle of building a theory of elementary particle interactions is symmetry. A theory must be invariant under a set of space-time symmetries (such as rotations, boosts), as well as under a set of “internal” symmetries, the ones that are specified by the model builder. This set of symmetries restrict how particles interact and also puts constraints on the properties of those particles. In particular, the symmetries of the Standard Model of particle physics require that W and Z bosons (particles that mediate weak interactions) must be massless. Since we know they must be massive, a new mechanism that generates those masses (i.e. breaks the symmetry) must be put in place. Note that a theory with massive W’s and Z that are “put in theory by hand” is not consistent (renormalizable).

The appropriate mechanism was known in the beginning of the 1960′s. It goes under the name of spontaneous symmetry breaking. In one variant it involves a spin-zero field whose self-interactions are governed by a “Mexican hat”-shaped potential

MexicanHat

It is postulated that the theory ends up in vacuum state that “breaks” the original symmetries of the model (like the valley in the picture above). One problem with this idea was that a theorem by G. Goldstone required a presence of a massless spin-zero particle, which was not experimentally observed. It was Robert Brout, François Englert, Peter Higgs, and somewhat later (but independently), by Gerry Guralnik, C. R. Hagen, Tom Kibble who showed a loophole in a version of Goldstone theorem when it is applied to relativistic gauge theories. In the proposed mechanism massless spin-zero particle does not show up, but gets “eaten” by the massless vector bosons giving them a mass. Precisely as needed for the electroweak bosons W and Z to get their masses!  A massive particle, the Higgs boson, is a consequence of this (BEH or Englert-Brout-Higgs-Guralnik-Hagen-Kibble) mechanism and represents excitation of the Higgs field about its new vacuum state.

It took about 50 years to experimentally confirm the idea by finding the Higgs boson! Tracking the historic timeline, the first paper by Englert and Brout, was sent to Physical Review Letter on 26 June 1964 and published in the issue dated 31 August 1964. Higgs’ paper, received by Physical Review Letters on 31 August 1964 (on the same day Englert and Brout’s paper was published)  and published in the issue dated 19 October 1964. What is interesting is that the original version of the paper by Higgs, submitted to the journal Physics Letters, was rejected (on the grounds that it did not warrant rapid publication). Higgs revised the paper and resubmitted it to Physical Review Letters, where it was published after another revision in which he actually pointed out the possibility of the spin-zero particle — the one that now carries his name. CERN’s announcement of Higgs boson discovery came 4 July 2012.

Is this the last Nobel Prize for particle physics? I think not. There are still many unanswered questions — and the answers would warrant Nobel Prizes. Theory of strong interactions (which ARE responsible for masses of all luminous matter in the Universe) is not yet solved analytically, the nature of dark matter is not known, the picture of how the Universe came to have baryon asymmetry is not cleared. Is there new physics beyond what we already know? And if yes, what is it? These are very interesting questions that need answers.

Share

Higgs mechanism for electrical engineers

Monday, October 7th, 2013

Since the Higgs boson’s discovery a little over a year ago at CERN I have been getting a lot of questions from my friends to explain to them “what this Higgs thing does.” So I often tried to use the crowd analogy that is ascribed to Prof. David Miller, to describe the Higgs (or Englert-Brout-Higgs-Guralnik-Hagen-Kibble) mechanism. Interestingly enough, it did not work well for most of my old school friends, majority of whom happen to pursue careers in engineering. So I thought that perhaps another analogy would be more appropriate. Here it is, please let me know what you think!

Imagine Higgs field as represented by some quantity of slightly magnetized iron filings, i.e. small pieces of iron that look like powder, spread over a table or other surface to represent Higgs field that permeates the Universe. Iron filings are common not only as dirt in metal shops, they are often used in school experiments and other science demonstrations to visualize the magnetic field.  It is important for them to be slightly magnetized, as this represents self-interaction of the Higgs field. Here they are pictured in a somewhat cartoonish way:

Image

How can Higgs field generate mass? Moreover, how can one field generate different masses for different types of particles? Let us first make an analogue of fermion mass generation. If we take a small magnet and put it in the filings, the magnet would pick up a bunch of filings, right? How much would it pick up? It depends on the “strength” of that magnet. It could be a little:

Image

…or it could be a lot, depending on what kind of magnet we use — or how strong it is:

Image

If we neglect the masses of our magnets, as we assumed they are small, the mass of the picked up mess with the magnets inside is totally determined by the mass of the picked filings, which in turn is determined by the interaction strength between the magnets and the filings. This is precisely how fermion mass generation works in the Standard Model!

In the Standard Model the massless fermions are coupled to the Higgs field via so-called Yukawa interactions, whose strength is parametrized by a number, the Yukawa coupling constant. For different fermion types (or flavors) the couplings would be numerically different, ranging from one to one part in a million. As a result of interaction with the Higgs field (NOT the boson!) in the form of its vacuum expectation value, all fermions acquire masses (ok, maybe not all — neutrinos could be different). And those masses would depend on the strength of the interaction of fermions with Higgs field, just like in our example with magnets and iron filings!

Now imagine that we simply kicked the table! No magnets. The filings would clamp together to form lumps of filings. Each lump would have a mass, which would only depend on how strong the filings attract to each other (remember that they are slightly magnetized?). If we don’t know how strong they are magnetized, we cannot tell how massive each lamp will be, so we would have to measure their masses.

Image

This gives a good analogy of the fact that Higgs boson is an excitation of the Higgs field (the fact that was pointed out by Higgs), and why we cannot predict its mass from the first principles, but need a direct observation at the LHC!

Notice that this picture (so far) does not provide direct analogy to how gauge bosons (W’s and Z bosons) receive their masses. W’s and Z are also initially massless because of the gauge (internal) symmetries required by the construction of the Standard Model. We did know their mass from earlier CERN and SLAC experiments — and even prior to those, we knew that W’s were massive from the fact that weak interactions are of the finite range.

To extend our analogy, let’s clean up the mess — literally! Let’s throw a bucket of water over the table covered with those iron filings and see what happens. Streams of water would pick up iron filings and flow from the table. Assuming that that water’s mass is negligible, the total mass of those water streams (aka dirty water) would be completely determined by the mass of picked iron filings, just like masses of W’s and Z are determined by the Higgs field.

This explanation seemed to work better for my engineering friends! What do you think?

Share

Another one bites the dust or “SuperB? What SuperB?”

Wednesday, November 28th, 2012

Studies of New Physics require several independent approaches. In the language of experimental physics it means several different experiments. Better yet, several accelerators that have detectors that study similar things, but produce results with different systematic and statistical uncertainties. For a number of years that was how things were: physicists searched for New Physics in high-energy experiments where new particles could be produced directly (think Tevatron or LHC experiments), or low-energy, extremely clean measurements that explored quantum effects of heavy new physics particles. In other words, New Physics could also be searched for indirectly.

As a prominent example of the later approach, detectors BaBar at SLAC (USA) and Belle at KEK (Japan) studied decays of copiously produced B-mesons in hopes to find glimpses of New Physics in quantum loops. These experiments measured many Standard Model-related parameters (in particular, confirming the mechanism of CP-violation in the Standard Model) and discovered many unexpected effects (like new mesons containing charmed quarks, as well as oscillations of charm mesons). But they did not see any effects that could not be explained by the Standard Model. A way to go in this case was to significantly increase luminosity of the machine, thereby allowing for very rare processes to be observed. Two super-flavor factories (those machines are really like factories, churning out millions of B-mesons) were proposed, the Belle-II experiment at KEK and a new Super-B factory at the newly-created Cabibbo Lab in Frascatti, Italy. I have already written about the Cabibbo Lab.

It appears, however, that Italian government decided today that it cannot fund the Super-B flavor factory. Tommaso Dorigo reported it in his blog this morning. Here is more hard data: there is a press release (in Italian) from the INFN that basically tells you that “economic conditions… were incompatible with the costs of the project evaluated.” Which is another way of saying that Italian government is not going to fund it. This follows by the news from the PhysicsWorld saying the same thing.

Many physicists have been expressing doubts that the original Super-B plan, which was, in my opinion, very bold, could be executed within the proposed time frame.  Yet, physicists pressed on… that is until this morning’s announcement. Reality of our world sets in — there is not enough money for basic research…
So what’s left? There is still, of course, Belle-II. Moreover, excellent performance of LHCb experiment at CERN (I wrote about that here) leaves us with great hopes. That is, if Nature cooperates…

Share

So, is Higgs finally here?

Wednesday, July 4th, 2012

Today is a big day at CERN. There are two collaborations that presented their latest results on the search of the Higgs boson. Did they finally discover the Higgs boson?

Let’s first figure out what it all means? What two collaborations? What is Higgs boson? And, most importantly, what do we mean by “discovered”?

First things first. The two collaborations that I’m talking about are CMS and ATLAS, two huge detectors and hundreds of professors, postdocs and graduate students working to get and work the data that come out of it. The collaborations looked at almost three years (although 2010 does not really count and 2012 is still going — but with fantastic pace) and found signals of the Higgs boson, a particle that  was predicted to be there in the minimal Standard Model.

Why is that we need Higgs boson and why is it there? The Standard Model of particle physics is described by its symmetries — or the symmetry group (SU(2)xU(1)) under which matter contents transform. This symmetry tells us how particles interact — and in fact, that makes Standard Model quite a constrained system. So the introduction of this symmetry is very important. However, this symmetry also tells us that all particles that are described there should be massless! What should one do? The idea is to break that symmetry, of course. The problem is how to break that symmetry. One cannot simply add symmetry-breaking terms (that would wreck the whole original setup), one has to do it indirectly. So the idea was proposed to introduce a field that interacts with all fields that are present in the Standard Model. That field also interacts with itself and forms a condensate (i.e. provides non-zero value for energy density of the vacuum) once, roughly speaking, the temperature of the Universe after the Big Bang drops below certain value. This mechanism gives mass to both electroweak gauge bosons (particles that represent weak force) and quark and leptons. The mechanism itself was first proposed in 1962 by Philip Warren Anderson. The model of spontaneous symmetry breaking was independently developed in 1964 by three groups, Robert Brout and Francois Englert; Peter Higgs; and Gerald Guralnik, C. R. Hagen, and Tom Kibble. The particle that manifests this effect is the famous Higgs boson. Read more about it here. I’ll talk more about it in my later posts.

CMS went first (which is a bit unusual, as Atlas, for some alphabetical reason, would always be first to deliver their talk). The talk was delivered by Joe Incandela, a CMS spokesperson. A gist of their talk is that they looked at several possible decay channels of the Higgs boson. First, Higgs can decay to two photons (H → γγ). They see a significant bump at mH = 125 GeV, but only in the combination if different reconstruction techniques. The overall significance is over 4 sigma. Next, they talked about H → ZZ channel. This channel is tougher, as they need to reconstruct Z’s that decay in different decay channels. Now, if they combine their data in H → γγ and in H → ZZ they find that statistical significance for signal that the Higgs is there at 5 sigma. However, once they combine all data, especially the H → ττ channel, their combined statistical significance goes slightly down to 4.9 sigma. This is just below discovery by the standards of Physical Review Letters, a very influential physics journal. But this is in very significant.

The next talk was by ATLAS. Fabiolla Gianotti, ATLAS spokesperson, gave that talk. They also see excess in H → γγ channel, but their statistical significance in that channel is lower, 4.5 sigma. Also, they include the so-called look-elsewhere effect — and then their statistical significance goes down to 3.5 sigma. Then, she discussed the H → ZZ channel. They see the excess with 3.4 sigma significance at mH about 125 GeV. Now, the combined results have excess at mH = 126.5 GeV with (local) statistical significance of 5.0 sigma. This is a discovery.

In passing, ATLAS also see a bump in their 4-lepton channel at approximately 90 GeV. Still not clear what it is….

This discovery is very significant. It tells us that our ideas on how electroweak symmetry is broken are at least partially correct. This is also the first truly elementary particle discovered since the Z-boson. There are still many questions, both experimental and theoretical, about the analyses presented today at CERN. What is going on with the H → ττ channel? Is it really a Standard Model Higgs boson? Or some other scalar particle. We’ll sure to study those things indeed.

P.S. The theorists who described the effects were there and not only were acknowledged by the experimental speakers, but also got to say a couple of words at the end.

Share

Why advertisers should know physics

Tuesday, June 12th, 2012

Some years ago, when I decided to start blogging, I wrote about an interesting advertisement that Ford Motor Company put up in all major magazines (it was even placed on the side of their headquarters in Dearborn, MI):

Here is what I said in that post of mine from several years ago: “What is interesting about this ad is the equations that this lady is writing — they look like the equations from the famous Peskin and Schroeder’s book on Quantum Field Theory (QFT), equations describing renormalization of phi^4 theory! How did Ford get a hold of them?

As it turns out, I happen know the answer. This ad was made by a company that is headquartered in Detroit — I have a business card of one of the authors of this ad!

What happened is that a couple of months ago I was sitting in my office at Wayne State University, looking over my QFT notes that I’m supposed to teach next Fall. A guy showed up at my door and asked to “write down a complicated-looking equation.” Now, that’s not a usual question that I get when I sit in my office during the lunchtime! He quickly explained that he works for this advertisement company (called JWT) and they were contracted by Ford to produce a series of ads that should highlight the talent of Ford engineers and at the same time appeal to young people. (He showed me a prototype of an ad with that girl sitting next to the blackboard.) So his boss sent him to the closest university (which happen to be WSU, we are located 5 min down Woodward Avenue from their office) to fish out a “complicated equation.” The rest is simple — I use Peskin and Schroeder as a main text for my graduate QFT  course, so that list of equations was indeed about renormalization of phi^4 theory… I must add that I received no monetary (or any other) compensation…

Amazing, isn’t it?”

The reason I re-post part of that old post is the following. I recently went to Florida to participate in CIPANP-2012 conference (I’ll post my impressions of this conference later this week). Now, Kennedy Space Center is on Cape Canaveral in Florida, so I rented a car and went to visit that marvelous place. The place is truly amazing! Lots of things to see. The place is still making history: I visited it just a couple of days after the historic launch of the Space X‘s Dragon capsule.

I also visited a gift shop and bought the following souvenir there:

 

 

See how many mistakes they got in there? And it’s not “rocket science”, it’s freshman physics! Quite embarrassing… Clearly, people from that JWT advertising agency in the example above take their job responsibilities much more seriously.

See that NASA seal in the upper left corner? Since I am sure that NASA scientists know physics, I take it as indication that they never visit their gift shop.

 

 

Share

CHARM of Hawaii

Monday, May 14th, 2012

I’m blogging from the site of CHARM-2012 conference, which has just started in Honolulu, Hawaii. This is a fantastic conference at a fantastic place! The conference will have four full-packed days filled with many aspects of physics related to charmed quark. As I reported earlier, many exciting recent results are associated with charm quark.

Why is the conference taking part in Hawaii? Besides being a nice place in general, it is almost exactly half way between Japan and the US. This meeting alternates between Asian, US and European locations, and last meeting, in 2009, was in Beijing — so it is US’ turn.  There will be many talks from KEK‘s Belle collaboration (which University of Hawaii is a member of), LHC experiments, as well as from Tevatron experiments. Besides, world’s only operating charm experiment (BES 3) is located in Beijing, China. Indeed, there would be many theory talks as well. It shapes to be a very nice conference — and I’ll be reporting about exciting results to be discussed here.

Share

Last chance for a Higgs prediction

Tuesday, December 13th, 2011

In a couple of Hours we shall know more than we did before — the CERN experiments, ATLAS and CMS are about to announce their findings about the Higgs boson. In particular, its mass. Why is it interesting? The mass of Higgs, a fundamental particle in the Standard Model (SM) and a manifestation of a Higgs mechanism (discovered by at least five people besides Dr. Peter Higgs), cannot be predicted within the Standard Model. Similarly to masses of quarks and leptons, it comes out from the combination of unknown parameters of the SM.

Indirect constraints on Higgs massYet, Higgs boson would affect precision measurements — its effects could be seen via its quantum effects.  So physicists would come out with pictures like the one that accompany this post (from which, incidentally, one can learn that the most likely value of the the Higgs mass given by the minimum of that plot, is already excluded by the direct measurements; what can one say — it’s a tough game).

In principle, Higgs boson mass (or mass of a Higgs-like particle) can be predicted in some models beyond the Standard Model. So, if you have any last-minute predictions, please through your hat in the ring! There are still about two hours before it becomes a “postdiction.”  My long-time prediction (as of two years ago) was m_H = 125 +- 5 GeV. What is it based on? A principle that life is tough — the Nature is not always kind to us and we have to work hard to measure what we want to measure. It is true for most measurements/parameters that were studied before, including the most recent study of CP-violation in charm. How scientific is this prediction? I’d say almost as scientific as those based on anthropic principle. :-)

Meanwhile, let’s see what CERN physicists have to say. Tune in here and let’s hope that we don’t overwhelm CERN’s servers.

Share

LHCb reports observation of CP-violation in charm. Welcome New Physics? Or not?

Monday, November 14th, 2011

One of CERN’s collaborations, the LHCb, has reported observation of direct CP-violation in the decays of charmed mesons at the Hadronic Collider Physics Symposium 2011 (HCP 2011) in Paris today. This is a fantastic news! While I am not at HCP 2011, kind folks at LHCb let me know about this fantastic measurement — since charm physics is my specialty.

So, what are we talking about here?

First things first. CP (or Charge Parity) is a set of (discrete) transformations performed on a theory’s Lagrangian — a function that describes what particles we have in a theory and how they interact. If your Lagrangian is symmetric  under this transformation, then particles and antiparticles — matter and antimatter — have the same properties. If not — interactions of matter particles are different from interactions of antimatter particles.  This possible difference is a crucial property of a theory because, according to three Sakharov criteria, the Universe could evolve in what we see around us only if matter and antimatter have different interaction properties. Otherwise, at best, we’d have big chanks of antimatter floating around — or at worst would not not exist at all.

This is why many huge experiments built to study CP violation. Big national labs’ flagship experiments were designed to search and study CP-violation (BaBar at SLAC, Belle at KEK, LHCb at CERN), with hopes to see glimpses of New Physics that could explain matter-antimatter asymmetry in the Universe. This new result from LHCb can in principle provide one.

LHCb experiment

So, what did LHCb see? The reported analysis looks at the difference of a difference — i.e. a difference of CP-violating asymmetries in kaons and pions. The CP-violating asymmetry is defined as the difference between decay widths (roughly speaking, decay probabilities) of a neutral D-meson to decay into a final state, say positive K-meson and a negative K-meson and the same quantity for the D-anti-particle to decay to the same final state. This quantity is also defined for the final state of two pions — and it is CP-violating!

The structure of this CP-violating asymmetry, aCP, is not that simple. Because D0 is a neutral particle it can, in principle, mix with its antiparticle (see here) — and this antiparticle can also decay into the same final state! This process can be also CP-violating (this type of CP-violation is called indirect CP-violation). So the result would depend on both types of CP-violation!

Moreover, experimentally, the asymmetries like this are not easy to measure — there are experimental systematics associated with D-production asymmetries, difference of interactions of positive and negative kaons with matter, etc. For this reason, experimentalists at LHCb decided to report the difference of CP-violating asymmetries, in which many of those effects, like productions asymmetries, would cancel. So, here is the result:

ΔaCP = -0.82 ± 0.21 (stat) ±0.11 (syst)%

In other words, this quantity is 3.5 sigmas away from being zero. The first question that one should ask is whether this quantity is consistent with previous measurements. The biggest question, however, is whether this quantity is consistent with Standard Model expectations.

There is a bunch of previous measurements available for aCP (KK) and aCP (ππ) separately. The thing is that

aCP (KK) = – aCP (ππ)

or approximately so. So by subtracting those quantities we not only subtract the experimental uncertainties, but also enhance the signal! However, looking at the table on page 6 of the talk, one can immediately realize that this measurement is at least consistent with the previous ones.

Is it a sign of something beyond the Standard Model? This one is hard to answer. I usually put an upper bound on the SM value (that is, absolute value) of asymmetries like aCP (KK) at 0.1% — which would make ΔaCP to be about 0.2%. Is it consistent with LHCb findings? Maybe. The size of this asymmetry is notoriously difficult to estimate due to hadronic effects. Maybe it is a sign of New Physics — this could be an exciting conclusion, as we have never seen CP-violation in up-quark sector.

It is interesting that the first “big” result from LHC comes in the realm of charm physics, not Higgs searches. Moreover, all “big” results in the last decade were from the experiments searching for New Physics indirectly, in the “intensity frontier” (this is lingo of US Department of Energy) — with most of them coming from charm physics. Maybe at the very least LHC-b should be renamed as LHC-c?

Share

2011 Physics Nobel Prize and related matters

Tuesday, October 4th, 2011

4 October 2011 is a day to remember. And I’m not talking about unveiling of the new iPhone, although it is also quite a remarkable event. Today, a 2011 Nobel Prize in Physics was awarded. As expected, in its annual failure, Thompson Reuters got it wrong in predicting 2011 Nobel Prize in Physics (to give them credit, they do put up the names of the right people, but always in the wrong year; this year they were predicting people from quantum entaglement). Anyways, this year’s Nobel Prize is totally deserving. The Nobel Prize in Physics 2011 was awarded jointly to Saul Perlmutter, Brian P. Schmidt, and Adam G. Riess “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.

This Nobel Prize is for the 1998 analysis of data from two collaborations, Supernova Cosmology Project (SCP), headed by Perlmutter, and High-z Supernova Search Team, headed by Schmidt and Reiss. The analyses centered on the the so-called Ia-type supernovae that have consistent peak brightness, which makes them “standard candles” of the Universe. This is an important property, which allows unambiguous measurement of distances (via the Hubble relation between the distance and the redshift) to the galaxy hosts of those supernovae. Using this data, they concluded that the Universe is going through the stage of accelerated expansion! This is a very interesting fact, especially taking into account the fact that the gravitational interaction is attractive!

This led to reevaluation of what we know about the Universe. It is widely accepted now that Dark Energy (i.e. something that permeates space and tends to increase the rate of expansion of the universe) accounts for about 74% of the total mass of the universe! Recalling that Dark Matter is responsible for about 22% of total mass gives us a fact that we really know almost next to nothing about the place we live in…

What is Dark Energy? This is a very good question. The simplest possibility is that it is the old good cosmological constant introduced by Einstein in the beginning of the last century. This leads to a particularly simple model of the Universe called Lambda-CDM model. Whether or not it is true remains to be seen. At any rate, Dark Energy/Dark Matter are currently one of the most exciting avenues for research in astrophysics (which is, of course, my subjective opinion!).

————————————————

Meanwhile, the annual 2011 Ig Nobel Prizes were awarded on September 29, 2011. Among the most remarkable are

“PHYSICS PRIZE: Philippe Perrin, Cyril Perrot, Dominique Deviterne and Bruno Ragaru (of FRANCE), and Herman Kingma (of THE NETHERLANDS), for determining why discus throwers become dizzy, and why hammer throwers don’t.”  As expected, for a work of this magnitude, the prize-winning research was published in the widely-read physics journal Acta Oto-laryngologica.

“MATHEMATICS PRIZE: Dorothy Martin of the USA (who predicted the world would end in 1954), Pat Robertson of the USA (who predicted the world would end in 1982), Elizabeth Clare Prophet of the USA (who predicted the world would end in 1990), Lee Jang Rim of KOREA (who predicted the world would end in 1992), Credonia Mwerinde of UGANDA (who predicted the world would end in 1999), and Harold Camping of the USA (who predicted the world would end on September 6, 1994 and later predicted that the world will end on October 21, 2011), for teaching the world to be careful when making mathematical assumptions and calculations.” This prize is quite timely, as the world once again is predicted to end 21 December 2012, although, frankly, they could have waited one year for this one.

Once again, the biology prize went for sexuality-related research. This time, among certain type of beetles and certain types of beer bottles (which should make a nice commercial of the type “Fosters is Australian for beer” (C)):

“BIOLOGY PRIZE: Darryl Gwynne (of CANADA and AUSTRALIA and the UK and the USA) and David Rentz (of AUSTRALIA and the USA) for discovering that a certain kind of beetle mates with a certain kind of Australian beer bottle.”

And my personal favorite is this year’s literature prize:

“LITERATURE PRIZE: John Perry of Stanford University, USA, for his Theory of Structured Procrastination, which says: To be a high achiever, always work on something important, using it as a way to avoid doing something that’s even more important.”

I would like to remind my readers that so far, there is only one “Grand Slam winner” — a person who got both Ig Nobel and a Nobel prizes: last year’s recipient of the Physics Nobel Prize Andre Geim.

Share