• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Richard
  • Ruiz
  • Univ. of Pittsburgh
  • U.S.A.

Latest Posts

  • Laura
  • Gladstone
  • University of Wisconsin, Madison
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Michael
  • DuVernois
  • Wisconsin IceCube Particle Astrophysics Center
  • USA

Latest Posts

  • Emily
  • Thompson
  • USLHC
  • Switzerland

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Fermilab | Batavia, IL | USA

Read Bio

Stanley Wojcicki awarded 2015 Panofsky Prize

Tuesday, November 18th, 2014

This article appeared in Fermilab Today on Nov. 18, 2014.

Stanley Wojcicki

Stanley Wojcicki

In late October, the American Physical Society Division of Particles and Fields announced that Stanford University professor emeritus of physics and Fermilab collaborator Stanley Wojcicki has been selected as the 2015 recipient of the W.K.H. Panofsky Prize in experimental particle physics. Panofsky, who died in 2007, was SLAC National Accelerator Laboratory’s first director, holding that position from 1961 to 1984.

“I knew Pief Panovsky for about 40 years, and I think he was a great man not only as a scientist, but also as a statesman and as a human being,” said Wojcicki, referring to Panofsky by his nickname. “So it doubles my pleasure and satisfaction in receiving an award that bears his name.”

Wojcicki was given the prestigious award “for his leadership and innovative contributions to experiments probing the flavor structure of quarks and leptons, in particular for his seminal role in the success of the MINOS long-baseline neutrino experiment.”

Wojcicki is a founding member of MINOS. He served as spokesperson from 1999 to 2004 and as co-spokesperson from 2004 to 2010.

“I feel a little embarrassed being singled out because, in high-energy physics, there is always a large number of individuals who have contributed and are absolutely essential to the success of the experiment,” he said. “This is certainly true of MINOS, where we had and have a number of excellent people.”

Wojcicki recalls the leadership of Caltech physicist Doug Michael, former MINOS co-spokesperson, who died in 2005.

“I always regret that Doug did not have a chance to see the results of an experiment that he very much contributed to,” Wojcicki said.

In 2006, MINOS measured an important parameter related to the mass difference between two neutrino types.

Fermilab physicist Doug Glenzinski chaired the Panofsky Prize review committee and says that the committee was impressed by Wojcicki’s work on flavor physics, which focuses on how particles change from one type to another, and his numerous contributions over decades of research.

“He is largely credited with making MINOS happen, with thinking about ways to advance neutrino measurements and with playing an active role in all aspects of the experiment from start to finish,” Glenzinski said.

More than 30 years ago, Wojcicki collaborated on charm quark research at Fermilab, later joining Fermilab’s neutrino explorations. Early on Wojcicki served on the Fermilab Users Executive Committee from 1969-71 and on the Program Advisory Committee from 1972-74. He has since been on many important committees, including serving as chair of the High-Energy Physics Advisory Panel for six years and as member of the P5 committee from 2005-08. He now continues his involvement in neutrino physics, participating in the NOvA and MINOS+ experiments.

“I feel really fortunate to have been connected with Fermilab since its inception,” Wojcicki said. “I think Fermilab is a great lab, and I hope it will continue as such for many years to come.”

Rich Blaustein

Share

Fermilab’s Oliver Gutsche keeps LHC community computing

Wednesday, November 12th, 2014

This article appeared in DOE Pulse on Nov. 10, 2014.

Fermilab's Oliver Gutsche leads worldwide computing operations for the CMS experiment. Photo: Reidar Hahn

Fermilab’s Oliver Gutsche leads worldwide computing operations for the CMS experiment. Photo: Reidar Hahn

Since he was a graduate student in Germany, Oliver Gutsche wanted to combine research in particle physics with computing for the large experiments that probe the building blocks of matter.

“When I started working on the physics data coming from one of the experiments at DESY, I was equally interested in everything that had to do with large-scale computing,” said Gutsche of his time at the German laboratory. Gutsche now works at DOE’s Fermi National Accelerator Laboratory. “So I also began working on the computing side of particle physics. For me that was always the combination I wanted to do.”

Gutsche’s desire to merge the two focuses has paid off. For the past four years Gutsche has been in charge of worldwide computing operations of the Large Hadron Collider’s CMS experiment, one of two experiments credited with the 2012 Higgs boson discovery. In December he was awarded the CMS Collaboration Award for his contributions to the global CMS computing system. And more recently, he has been promoted to assistant head of the Scientific Computing Division at Fermilab.

As head of CMS Computing Operations, Gutsche orchestrates data processing, simulations, data analysis and transfers and manages infrastructure and many more central tasks. Monte Carlo simulations of particle interactions, for example, are a key deliverable of the CMS Computing Operations group. Monte Carlo simulations employ randomness to simulate the collisions of the LHC and their products in a statistical way.

“You have to simulate the randomness of nature,” explained Gutsche. “We need Monte Carlo collisions to make sure we understand the data recorded by the CMS experiment and to compare them to the theory.”

When Gutsche received his Ph.D. from the University of Hamburg in 2005, he was looking for a job to combine LHC work, large-scale computing and a U.S. postdoc experience.

“Fermilab was an ideal place to do LHC physics research and LHC computing at the same time,” he said. His postdoc work led to his appointment as an application physicist at Fermilab and as the CMS Computing Operations lead.

Today Gutsche interacts regularly with people at universities and laboratories across the United States and at CERN, host laboratory of the LHC, often starting the day at 7 a.m. for transatlantic or transcontinental meetings.

“I try to talk physics and computing with everyone involved, even those in different time zones, from CERN to the west coast,” he said. Late afternoon in the United States is a good time for writing code. “That’s when everything quiets down and Europe is asleep.”

Gutsche expects to further enhance the cooperation between U.S. particle physicists and their international colleagues, mostly in Europe, by using the new premier U.S. Department of Energy’s Energy Sciences Network recently announced in anticipation of the LHC’s restart in spring 2015 at higher energy.

Helping connect the research done by particle physicists around the world, Gutsche finds excitement in all the work he does.

“Of course the Higgs boson discovery was very exciting,” Gutsche said. “But in CMS Computing Operations everything is exciting because we prepare the basis for hundreds of physics analyses so far and many more to come, not only for the major discoveries.”

Rich Blaustein

Share

New technique for generating RF power may dramatically cut linac costs

Monday, November 3rd, 2014

This article appeared in Fermilab Today on Nov. 3, 2014.

A team from the Accelerator Division has successfully powered this small SRF cavity with a magnetron. Now they aim to power a large, application-specific model. Photo: Brian Chase, AD

A team from the Accelerator Division has successfully powered this small SRF cavity with a magnetron. Now they aim to power a large, application-specific model. Photo: Brian Chase, Fermilab

If you own a magnetron, you probably use it to cook frozen burritos. The device powers microwave ovens by converting electricity into electromagnetic radiation. But Fermilab engineers believe they’ve found an even better use. They’ve developed a new technique to use a magnetron to power a superconducting radio-frequency (SRF) cavity, potentially saving hundreds of millions of dollars in the construction and operating costs of future linear accelerators.

The technique is far from market-ready, but recent tests with Accelerator Division RF Department-developed components at the Fermilab AZero test facility have proven that the idea works. Team leaders Brian Chase and Ralph Pasquinelli have, with Fermilab’s Office of Partnerships and Technology Transfer, applied for a patent and are looking for industrial partners to help scale up the process.

Both high-energy physics and industrial applications could benefit from the development of a high-power, magnetron-based RF station. The SRF cavity power source is a major cost of accelerators, but thanks to a long manufacturing history, accelerator-scale magnetrons could be mass-produced at a fraction of the cost of klystrons and other technologies typically used to generate and control radio waves in accelerators.

“Instead of paying $10 to $15 per watt of continuous-wave RF power, we believe that we can deliver that for about $3 per watt,” Pasquinelli said.

That adds up quickly for modern projects like Fermilab’s Proton Improvement Plan II, with more than 100 cavities, or the proposed International Linear Collider, which will call for about 15,000 cavities requiring more than 3 billion watts of pulsed RF power. The magnetron design is also far more efficient than klystrons, further driving down long-term costs.

The magnetron project members are, from left: Brian Chase, Ed Cullerton, Ralph Pasquinelli and Philip Varghese. Photo: Elvin Harms, Fermilab

The magnetron project members are, from left: Brian Chase, Ed Cullerton, Ralph Pasquinelli and Philip Varghese. Photo: Elvin Harms, Fermilab

But the straightforward idea wasn’t without obstacles.

“For an accelerator, you need very precise control of the amplitude and the phase of the signal,” Chase said. That’s on the order of 0.01 percent accuracy. Magnetrons don’t normally allow this kind of control.

One solution, Chase realized, is to apply a well-known mathematical expression known as a Bessel function, developed in the 19th century for astronomical calculations. Chase repurposed the function for the magnetron’s phase modulation scheme, which allowed for a high degree of control over the signal’s amplitude. Similar possible solutions to the amplitude problem use two magnetrons, but doubling most of the hardware would mean negating potential savings.

“Our technique uses one magnetron, and we use this modulation scheme, which has been known for almost a hundred years. It’s just never been put together,” Pasquinelli said. “And we came in thinking, ‘Why didn’t anyone else think of that?'”

Chase and Pasquinelli are now working with Bob Kephart, director of the Illinois Accelerator Research Center, to find an industry partner to help them develop their idea. Inexpensive, controlled RF power is already needed in certain medical equipment, and according to Kephart, driving down the costs will allow new applications to surface, such as using accelerators to clean up flue gas or sterilizing municipal waste.

“The reason I’m not retired is that I want to build this prototype,” Pasquinelli said. “It’s a solution to a real-world problem, and it will be a lot of fun to build the first one.”

Troy Rummler

Share

Costumes to make zombie Einstein proud

Wednesday, October 29th, 2014

This article appeared in symmetry on Oct. 21, 2014.

These physics-themed Halloween costume ideas are sure to entertain—and maybe even educate. Terrifying, we know. Image: Sandbox Studio, Chicago with Corinne Mucha

These physics-themed Halloween costume ideas are sure to entertain—and maybe even educate. Terrifying, we know. Image: Sandbox Studio, Chicago with Corinne Mucha

 

So you haven’t picked a Halloween costume, and the big night is fast approaching. If you’re looking for something a little funny, a little nerdy and sure to impress fellow physics fans, look no further. We’ve got you covered.

1. Dark energy

This is an active costume, perfect for the party-goer who plans to consume a large quantity of sugar. Suit up in all black or camouflage, then spend your evening squeezing between people and pushing them apart.

Congratulations! You’re dark energy: a mysterious force causing the accelerating expansion of the universe, intriguing in the lab and perplexing on the dance floor.

2. Cosmic inflation

Theory says that a fraction of a second after the big bang, the universe grew exponentially, expanding so that tiny fluctuations were stretched into the seeds of entire galaxies.

But good luck getting that costume through the door.

Instead, take a simple yellow life vest and draw the cosmos on it: stars, planets, asteroids, whatever you fancy. When friends pull on the emergency tab, the universe will grow.

3. Heisenberg Uncertainty Principle

Here’s a great excuse to repurpose your topical Breaking Bad costume from last year.

Walter White—aka “Heisenberg”—may have been a chemistry teacher, but the Heisenberg Uncertainty Principle is straight out of physics. Named after Werner Heisenberg, a German physicist credited with the creation of quantum mechanics, the Heisenberg Uncertainty Principle states that the more accurately you know the position of a particle, the less information you know about its momentum.

Put on Walter White’s signature hat and shades (or his yellow suit and respirator), but then add some uncertainty by pasting Riddler-esque question marks to your outfit.

4. Bad neutrino

A warning upfront: Only the ambitious and downright extroverted should attempt this costume.

Neutrinos are ghostly particles that pass through most matter undetected. In fact, trillions of neutrinos pass through your body every second without your knowledge.

But you aren’t going to go as any old neutrino. Oh no. You’re a bad neutrino—possibly the worst one in the universe—so you run into everything: lampposts, trees, haunted houses and yes, people. Don a simple white sheet and spend the evening interacting with everyone and everything.

5. Your favorite physics experiment

You physics junkies know that there are a lot of experiments with odd acronyms and names that are ripe for Halloween costumes. You can go as ATLAS (experiment at the Large Hadron Collider / character from Greek mythology), DarkSide (dark matter experiment at Gran Sasso National Laboratory / good reason to repurpose your Darth Vader costume), PICASSO (dark matter experiment at SNOLAB / creator of Cubism), MINERvA (Fermilab neutrino experiment / Roman goddess of wisdom), or the Dark Energy Survey (dark energy camera located at the Blanco Telescope in Chile / good opportunity for a pun).

Physics-loving parents can go as explorer Daniel Boone, while the kids go as neutrino experiments MicroBooNE and MiniBooNE. The kids can wear mini fur hats of their own or dress as detector tanks to be filled with candy.

6. Feynman diagram

You might know that a Feynman diagram is a drawing that uses lines and squiggles to represent a particle interaction. But have you ever noticed that they sometimes look like people? Try out this new take on the black outfit/white paint skeleton costume. Bonus points for going as a penguin diagram.

7. Antimatter

Break out the bell-bottoms and poster board. In bold letters, scrawl the words of your choosing: “I hate things!,” “Stuff is awful!,” and “Down with quarks!” will all do nicely. Protest from house to house and declare with pride that you are antimatter. It’s a fair critique: Physicists still aren’t sure why matter dominates the universe when equal amounts of matter and antimatter should have been created in the big bang.

Fortunately, you don’t have to solve this particular puzzle on your quest for candy. Just don’t high five anyone; you might annihilate.

8. Entangled particles

Einstein described quantum entanglement as “spooky action at a distance”—the perfect costume for Halloween. Entangled particles are extremely strange. Measuring one automatically determines the state of the other, instantaneously.

Find someone you are extremely in tune with and dress in opposite colors, like black and white. When no one is observing you, you can relax. But when interacting with people, be sure to coordinate movements. They spin to the left, you spin to the right. They wave with the right hand? You wave with the left. You get the drill.

You can also just wrap yourselves together in a net. No one said quantum entanglement has to be hard.

9. Holographic you(niverse)

The universe may be like a hologram, according to a theory currently being tested at Fermilab’s Holometer experiment. If so, information about spacetime is chunked into 2-D bits that only appear three-dimensional from our perspective.

Help others imagine this bizarre concept by printing out a photo of yourself and taping it to your front. You’ll still technically be 3-D, but that two-dimensional picture of your face will still start some interesting discussions. Perhaps best not to wear this if you have a busy schedule or no desire to discuss the nature of time and space while eating a Snickers.

10. Your favorite particle

There are many ways to dress up as a fundamental particle. Bring a lamp along to trick-or-treat to go as the photon, carrier of light. Hand out cookies to go as the Higgs boson, giver of mass. Spend the evening attaching things to people to go as a gluon.

To branch out beyond the Standard Model of particle physics, go as a supersymmetric particle, or sparticle: Wear a gladiator costume and shout, “I am Sparticle!” whenever someone asks about your costume.

Or grab a partner to become a meson, a particle made of a quark and antiquark. Mesons are typically unstable, so whenever you unlink arms, be sure to decay in a shower of electrons and neutrinos—or candy corn.

Lauren Biron

Share

New high-speed transatlantic network to benefit science collaborations across the U.S.

Wednesday, October 22nd, 2014

This Fermilab press release came out on Oct. 20, 2014.

ESnet to build high-speed extension for faster data exchange between United States and Europe. Image: ESnet

ESnet to build high-speed extension for faster data exchange between United States and Europe. Image: ESnet

Scientists across the United States will soon have access to new, ultra-high-speed network links spanning the Atlantic Ocean thanks to a project currently under way to extend ESnet (the U.S. Department of Energy’s Energy Sciences Network) to Amsterdam, Geneva and London. Although the project is designed to benefit data-intensive science throughout the U.S. national laboratory complex, heaviest users of the new links will be particle physicists conducting research at the Large Hadron Collider (LHC), the world’s largest and most powerful particle collider. The high capacity of this new connection will provide U.S. scientists with enhanced access to data at the LHC and other European-based experiments by accelerating the exchange of data sets between institutions in the United States and computing facilities in Europe.

DOE’s Brookhaven National Laboratory and Fermi National Accelerator Laboratory—the primary computing centers for U.S. collaborators on the LHC’s ATLAS and CMS experiments, respectively—will make immediate use of the new network infrastructure once it is rigorously tested and commissioned. Because ESnet, based at DOE’s Lawrence Berkeley National Laboratory, interconnects all national laboratories and a number of university-based projects in the United States, tens of thousands of researchers from all disciplines will benefit as well.

The ESnet extension will be in place before the LHC at CERN in Switzerland—currently shut down for maintenance and upgrades—is up and running again in the spring of 2015. Because the accelerator will be colliding protons at much higher energy, the data output from the detectors will expand considerably—to approximately 40 petabytes of raw data per year compared with 20 petabytes for all of the previous lower-energy collisions produced over the three years of the LHC first run between 2010 and 2012.

The cross-Atlantic connectivity during the first successful run for the LHC experiments, which culminated in the discovery of the Higgs boson, was provided by the US LHCNet network, managed by the California Institute of Technology. In recent years, major research and education networks around the world—including ESnet, Internet2, California’s CENIC, and European networks such as DANTE, SURFnet and NORDUnet—have increased their backbone capacity by a factor of 10, using sophisticated new optical networking and digital signal processing technologies. Until recently, however, higher-speed links were not deployed for production purposes across the Atlantic Ocean—creating a network “impedance mismatch” that can harm large, intercontinental data flows.

An evolving data model
This upgrade coincides with a shift in the data model for LHC science. Previously, data moved in a more predictable and hierarchical pattern strongly influenced by geographical proximity, but network upgrades around the world have now made it possible for data to be fetched and exchanged more flexibly and dynamically. This change enables faster science outcomes and more efficient use of storage and computational power, but it requires networks around the world to perform flawlessly together.

“Having the new infrastructure in place will meet the increased need for dealing with LHC data and provide more agile access to that data in a much more dynamic fashion than LHC collaborators have had in the past,” said physicist Michael Ernst of DOE’s Brookhaven National Laboratory, a key member of the team laying out the new and more flexible framework for exchanging data between the Worldwide LHC Computing Grid centers.

Ernst directs a computing facility at Brookhaven Lab that was originally set up as a central hub for U.S. collaborators on the LHC’s ATLAS experiment. A similar facility at Fermi National Accelerator Laboratory has played this role for the LHC’s U.S. collaborators on the CMS experiment. These computing resources, dubbed Tier 1 centers, have direct links to the LHC at the European laboratory CERN (Tier 0).  The experts who run them will continue to serve scientists under the new structure. But instead of serving as hubs for data storage and distribution only among U.S.-based collaborators at Tier 2 and 3 research centers, the dedicated facilities at Brookhaven and Fermilab will be able to serve data needs of the entire ATLAS and CMS collaborations throughout the world. And likewise, U.S. Tier 2 and Tier 3 research centers will have higher-speed access to Tier 1 and Tier 2 centers in Europe.

“This new infrastructure will offer LHC researchers at laboratories and universities around the world faster access to important data,” said Fermilab’s Lothar Bauerdick, head of software and computing for the U.S. CMS group. “As the LHC experiments continue to produce exciting results, this important upgrade will let collaborators see and analyze those results better than ever before.”

Ernst added, “As centralized hubs for handling LHC data, our reliability, performance and expertise have been in demand by the whole collaboration, and now we will be better able to serve the scientists’ needs.”

An investment in science
ESnet is funded by DOE’s Office of Science to meet networking needs of DOE labs and science projects. The transatlantic extension represents a financial collaboration, with partial support coming from DOE’s Office of High Energy Physics (HEP) for the next three years. Although LHC scientists will get a dedicated portion of the new network once it is in place, all science programs that make use of ESnet will now have access to faster network links for their data transfers.

“We are eagerly awaiting the start of commissioning for the new infrastructure,” said Oliver Gutsche, Fermilab scientist and member of the CMS Offline and Computing Management Board. “After the Higgs discovery, the next big LHC milestones will come in 2015, and this network will be indispensable for the success of the LHC Run 2 physics program.”

This work was supported by the DOE Office of Science.
Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy.  The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab, or find us on Facebook, http://www.facebook.com/BrookhavenLab/.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media contacts:

  • Karen McNulty-Walsh, Brookhaven Media and Communications Office, kmcnulty@bnl.gov, 631-344-8350
  • Kurt Riesselmann, Fermilab Office of Communication, media@fnal.gov, 630-840-3351
  • Jon Bashor, Computing Sciences Communications Manager, Lawrence Berkeley National Laboratory, jbashor@lbnl.gov, 510-486-5849

Computing contacts:

  • Lothar Bauerdick, Fermilab, US CMS software computing, bauerdick@fnal.gov, 630-840-6804
  • Oliver Gutsche, Fermilab, CMS Offline and Computing Management Board, gutsche@fnal.gov, 630-840-8909
Share

Top quark still raising questions

Wednesday, October 15th, 2014

This article appeared in symmetry on Oct. 15, 2014.

Why are scientists still interested in the heaviest fundamental particle nearly 20 years after its discovery? Photo: Reidar Hahn, Fermilab

Why are scientists still interested in the heaviest fundamental particle nearly 20 years after its discovery? Photo: Reidar Hahn, Fermilab

“What happens to a quark deferred?” the poet Langston Hughes may have asked, had he been a physicist. If scientists lost interest in a particle after its discovery, much of what it could show us about the universe would remain hidden. A niche of scientists, therefore, stay dedicated to intimately understanding its properties.

Case in point: Top 2014, an annual workshop on top quark physics, recently convened in Cannes, France, to address the latest questions and scientific results surrounding the heavyweight particle discovered in 1995 (early top quark event pictured above).

Top and Higgs: a dynamic duo?
A major question addressed at the workshop, held from September 29 to October 3, was whether top quarks have a special connection with Higgs bosons. The two particles, weighing in at about 173 and 125 billion electronvolts, respectively, dwarf other fundamental particles (the bottom quark, for example, has a mass of about 4 billion electronvolts and a whole proton sits at just below 1 billion electronvolts).

Prevailing theory dictates that particles gain mass through interactions with the Higgs field, so why do top quarks interact so much more with the Higgs than do any other known particles?

Direct measurements of top-Higgs interactions depend on recording collisions that produce the two side-by-side. This hasn’t happened yet at high enough rates to be seen; these events theoretically require higher energies than the Tevatron or even the LHC’s initial run could supply. But scientists are hopeful for results from the next run at the LHC.

“We are already seeing a few tantalizing hints,” says Martijn Mulders, staff scientist at CERN. “After a year of data-taking at the higher energy, we expect to see a clear signal.” No one knows for sure until it happens, though, so Mulders and the rest of the top quark community are waiting anxiously.

A sensitive probe to new physics

Top and antitop quark production at colliders, measured very precisely, started to reveal some deviations from expected values. But in the last year, theorists have responded by calculating an unprecedented layer of mathematical corrections, which refined the expectation and promise to realigned the slightly rogue numbers.

Precision is an important, ongoing effort. If researchers aren’t able to reconcile such deviations, the logical conclusion is that the difference represents something they don’t know about — new particles, new interactions, new physics beyond the Standard Model.

The challenge of extremely precise measurements can also drive the formation of new research alliances. Earlier this year, the first Fermilab-CERN joint announcement of collaborative results set a world standard for the mass of the top quark.

Such accuracy hones methods applied to other questions in physics, too, the same way that research on W bosons, discovered in 1983, led to the methods Mulders began using to measure the top quark mass in 2005. In fact, top quark production is now so well controlled that it has become a tool itself to study detectors.

Forward-backward synergy

With the upcoming restart in 2015, the LHC will produce millions of top quarks, giving researchers troves of data to further physics. But scientists will still need to factor in the background noise and data-skewing inherent in the instruments themselves, called systematic uncertainty.

“The CDF and DZero experiments at the Tevatron are mature,” says Andreas Jung, senior postdoc at Fermilab. “It’s shut down, so the understanding of the detectors is very good, and thus the control of systematic uncertainties is also very good.”

Jung has been combing through the old data with his colleagues and publishing new results, even though the Tevatron hasn’t collided particles since 2011. The two labs combined their respective strengths to produce their joint results, but scientists still have much to learn about the top quark, and a new arsenal of tools to accomplish it.

“DZero published a paper in Nature in 2004 about the measurement of the top quark mass that was based on 22 events,” Mulders says. “And now we are working with millions of events. It’s incredible to see how things have evolved over the years.”

Troy Rummler

Share

Fermilab’s 500-mile neutrino experiment up and running

Monday, October 6th, 2014

This Fermilab press release came out on Oct. 6, 2014.

With construction completed, the NOvA experiment has begun its probe into the mysteries of ghostly particles that may hold the key to understanding the universe. Image: Fermilab/Sandbox Studio

With construction completed, the NOvA experiment has begun its probe into the mysteries of ghostly particles that may hold the key to understanding the universe. Image: Fermilab/Sandbox Studio

It’s the most powerful accelerator-based neutrino experiment ever built in the United States, and the longest-distance one in the world. It’s called NOvA, and after nearly five years of construction, scientists are now using the two massive detectors – placed 500 miles apart – to study one of nature’s most elusive subatomic particles.

Scientists believe that a better understanding of neutrinos, one of the most abundant and difficult-to-study particles, may lead to a clearer picture of the origins of matter and the inner workings of the universe. Using the world’s most powerful beam of neutrinos, generated at the U.S. Department of Energy’s Fermi National Accelerator Laboratory near Chicago, the NOvA experiment can precisely record the telltale traces of those rare instances when one of these ghostly particles interacts with matter.

Construction on NOvA’s two massive neutrino detectors began in 2009. In September, the Department of Energy officially proclaimed construction of the experiment completed, on schedule and under budget.

“Congratulations to the NOvA collaboration for successfully completing the construction phase of this important and exciting experiment,” said James Siegrist, DOE associate director of science for high energy physics. “With every neutrino interaction recorded, we learn more about these particles and their role in shaping our universe.”

NOvA’s particle detectors were both constructed in the path of the neutrino beam sent from Fermilab in Batavia, Illinois, to northern Minnesota. The 300-ton near detector, installed underground at the laboratory, observes the neutrinos as they embark on their near-light-speed journey through the Earth, with no tunnel needed. The 14,000-ton far detector — constructed in Ash River, Minnesota, near the Canadian border – spots those neutrinos after their 500-mile trip and allows scientists to analyze how they change over that long distance.

For the next six years, Fermilab will send tens of thousands of billions of neutrinos every second in a beam aimed at both detectors, and scientists expect to catch only a few each day in the far detector, so rarely do neutrinos interact with matter.

From this data, scientists hope to learn more about how and why neutrinos change between one type and another. The three types, called flavors, are the muon, electron and tau neutrino. Over longer distances, neutrinos can flip between these flavors. NOvA is specifically designed to study muon neutrinos changing into electron neutrinos. Unraveling this mystery may help scientists understand why the universe is composed of matter and why that matter was not annihilated by antimatter after the big bang.

Scientists will also probe the still-unknown masses of the three types of neutrinos in an attempt to determine which is the heaviest.

“Neutrino research is one of the cornerstones of Fermilab’s future and an important part of the worldwide particle physics program,” said Fermilab Director Nigel Lockyer. “We’re proud of the NOvA team for completing the construction of this world-class experiment, and we’re looking forward to seeing the first results in 2015.”

The far detector in Minnesota is believed to be the largest free-standing plastic structure in the world, at 200 feet long, 50 feet high and 50 feet wide. Both detectors are constructed from PVC and filled with a scintillating liquid that gives off light when a neutrino interacts with it. Fiber optic cables transmit that light to a data acquisition system, which creates 3-D pictures of those interactions for scientists to analyze.

The NOvA far detector in Ash River saw its first long-distance neutrinos in November 2013. The far detector is operated by the University of Minnesota under an agreement with Fermilab, and students at the university were employed to manufacture the component parts of both detectors.

“Building the NOvA detectors was a wide-ranging effort that involved hundreds of people in several countries,” said Gary Feldman, co-spokesperson of the NOvA experiment. “To see the construction completed and the operations phase beginning is a victory for all of us and a testament to the hard work of the entire collaboration.”

The NOvA collaboration comprises 208 scientists from 38 institutions in the United States, Brazil, the Czech Republic, Greece, India, Russia and the United Kingdom. The experiment receives funding from the U.S. Department of Energy, the National Science Foundation and other funding agencies.

For more information, visit the experiment’s website: http://www-nova.fnal.gov.

Note: NOvA stands for NuMI Off-Axis Electron Neutrino Appearance. NuMI is itself an acronym, standing for Neutrinos from the Main Injector, Fermilab’s flagship accelerator.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Share

High school students advance particle physics and their own science education at Fermilab

Tuesday, September 30th, 2014

This article appeared in Fermilab Today on Sept. 30, 2014.

Illinois Mathematics and Science Academy students Nerione Agrawal (left) and Paul Nebres (right) work on the Muon g-2 experiment through the Student Inquiry and Research program. Muon g-2 scientist Brendan Kiburg (center) co-mentors the students. Photo: Fermilab

Illinois Mathematics and Science Academy students Nerione Agrawal (left) and Paul Nebres (right) work on the Muon g-2 experiment through the Student Inquiry and Research program. Muon g-2 scientist Brendan Kiburg (center) co-mentors the students. Photo: Fermilab

As an eighth grader, Paul Nebres took part in a 2012 field trip to Fermilab. He learned about the laboratory’s exciting scientific experiments, said hello to a few bison and went home inspired.

Now a junior at the Illinois Mathematics and Science Academy (IMSA) in Aurora, Nebres is back at Fermilab, this time actively contributing to its scientific program. He’s been working on the Muon g-2 project since the summer, writing software that will help shape the magnetic field that guides muons around a 150-foot-circumference muon storage ring.

Nebres is one of 13 IMSA students at Fermilab. The high school students are part of the academy’s Student Inquiry and Research program, or SIR. Every Wednesday over the course of a school year, the students use these weekly Inquiry Days to work at the laboratory, putting their skills to work and learning new ones that advance their understanding in the STEM fields.

The program is a win for both the laboratory and the students, who work on DZero, MicroBooNE, MINERvA and electrical engineering projects, in addition to Muon g-2.

“You can throw challenging problems at these students, problems you really want solved, and then they contribute to an important part of the experiment,” said Muon g-2 scientist Brendan Kiburg, who co-mentors a group of four SIR students with scientists Brendan Casey and Tammy Walton. “Students can build on various aspects of the projects over time toward a science result and accumulate quite a nice portfolio.”

This year roughly 250 IMSA students are in the broader SIR program, conducting independent research projects at Argonne National Laboratory, the University of Chicago and other Chicago-area institutions.

IMSA junior Nerione Agrawal, who started in the SIR program this month, uses her background in computing and engineering to simulate the potential materials that will be used to build Muon g-2 detectors.

“I’d been to Fermilab a couple of times before attending IMSA, and when I found out that you could do an SIR at Fermilab, I decided I wanted to do it,” she said. “I’ve really enjoyed it so far. I’ve learned so much in three weeks alone.”

The opportunities for students at the laboratory extend beyond their particular projects.

“We had the summer undergraduate lecture series, so apart from doing background for the experiment, I learned what else is going on around Fermilab, too,” Nebres said. “I didn’t expect the amount of collaboration that goes on around here to be at the level that it is.”

In April, every SIR student will create a poster on his or her project and give a short talk at the annual IMSAloquium.

Kiburg encourages other researchers at the lab to advance their projects while nurturing young talent through SIR.

“This is an opportunity to let a creative person take the reins of a project, steward it to completion or to a point that you could pick up where they leave off and finish it,” he said. “There’s a real deliverable outcome. It’s inspiring.”

Leah Hesla

Share

Breakthrough: nanotube cathode creates more electron beam than large laser system

Monday, September 22nd, 2014

This article appeared in Fermilab Today on Sept. 22, 2014.

Harsha Panunganti of Northern Illinois University works on the laser system (turned off here) normally used to create electron beams from a photocathode. Photo: Reidar Hahn

Harsha Panunganti of Northern Illinois University works on the laser system (turned off here) normally used to create electron beams from a photocathode. Photo: Reidar Hahn

Lasers are cool, except when they’re clunky, expensive and delicate.

So a collaboration led by RadiaBeam Technologies, a California-based technology firm actively involved in accelerator R&D, is designing an electron beam source that doesn’t need a laser. The team led by Luigi Faillace, a scientist at RadiaBeam, is testing a carbon nanotube cathode — about the size of a nickel — in Fermilab’s High-Brightness Electron Source Lab (HBESL) that completely eliminates the need for a room-sized laser system currently used to generate the electron beam.

Fermilab was sought out to test the experimental cathode because of its capability and expertise for handling intense electron beams, one of relatively few labs that can support this project.

Tests have shown that the vastly smaller cathode does a better job than the laser. Philippe Piot, a staff scientist in the Fermilab Accelerator Division and a joint appointee at Northern Illinois University, says tests have produced beam currents a thousand to a million times greater than the one generated with a laser. This remarkable result means that electron beam equipment used in industry may become not only less expensive and more compact, but also more efficient. A laser like the one in HBESL runs close to half a million dollars, Piot said, about hundred times more than RadiaBeam’s cathode.

The technology has extensive applications in medical equipment and national security, as an electron beam is a critical component in generating X-rays. And while carbon nanotube cathodes have been studied extensively in academia, Fermilab is the first facility to test the technology within a full-scale setting.

“People have talked about it for years,” said Piot, “but what was missing was a partnership between people that have the know-how at a lab, a university and a company.”

The dark carbon-nanotube-coated area of this field emission cathode is made of millions of nanotubes that function like little lightning rods. At Fermilab's High-Brightness Electron Source Lab, scientists have tested this cathode in the front end of an accelerator, where a strong electric field siphons electrons off the nanotubes to create an intense electron beam. Photo: Reidar Hahn

The dark carbon-nanotube-coated area of this field emission cathode is made of millions of nanotubes that function like little lightning rods. At Fermilab’s High-Brightness Electron Source Lab, scientists have tested this cathode in the front end of an accelerator, where a strong electric field siphons electrons off the nanotubes to create an intense electron beam. Photo: Reidar Hahn

Piot and Fermilab scientist Charles Thangaraj are partnering with RadiaBeam Technologies staff Luigi Faillace and Josiah Hartzell and Northern Illinois University student Harsha Panuganti and researcher Daniel Mihalcea. A U.S. Department of Energy Small Business Innovation Research grant, a federal endowment designed to bridge the R&D gap between basic research and commercial products, funds the project. The work represents the kind of research that will be enabled in the future at the Illinois Accelerator Research Center — a facility that brings together Fermilab expertise and industry.

The new cathode appears at first glance like a smooth black button, but at the nanoscale it resembles, in Piot’s words, “millions of lightning rods.”

“When you apply an electric field, the field lines organize themselves around the rods’ extremities and enhance the field,” Piot said. The electric field at the peaks is so intense that it pulls streams of electrons off the cathode, creating the beam.

Traditionally, lasers strike cathodes in order to eject electrons through photoemission. Those electrons form a beam by piggybacking onto a radio-frequency wave, synchronized to the laser pulses and formed in a resonance cavity. Powerful magnets focus the beam. The tested nanotube cathode requires no laser as it needs only the electric field already generated by the accelerator to siphon the electrons off, a process dubbed field emission.

The intense electric field, though, has been a tremendous liability. Piot said critics thought the cathode “was just going to explode and ruin the electron source, and we would be crying because it would be dead.”

One of the first discoveries Piot’s team made when they began testing in May was that the cathode did not, in fact, explode and ruin everything. The exceptional strength of carbon nanotubes makes the project feasible.

Still, Piot continues to study ways to optimize the design of the cathode to prevent any smaller, adverse effects that may take place within the beam assembly. Future research also may focus on redesigning an accelerator that natively incorporates the carbon nanotube cathode to avoid any compatibility issues.

Troy Rummler

Share

Summer intern studies physics for self, family

Tuesday, September 16th, 2014

This article appeared in Fermilab Today on Sept. 16, 2014.

Summer intern Sheri Lopez, here with son Dominic, pursues her love of physics as a student at the University of New Mexico-Los Alamos. She spent this summer at Fermilab as a summer intern. Photo courtesy of Sheri Lopez

Summer intern Sheri Lopez, here with son Dominic, pursues her love of physics as a student at the University of New Mexico-Los Alamos. She spent this summer at Fermilab as a summer intern. Photo courtesy of Sheri Lopez

Dominic is two. He is obsessed with “Despicable Me” and choo-choos. His mom Sheri Lopez is 29, obsessed with physics, and always wanted to be an astronaut.

But while Dominic’s future is full of possibilities, his mom’s options are narrower. Lopez is a single mother and a sophomore at the University of New Mexico-Los Alamos, where she is double majoring in physics and mechanical engineering. Her future is focused on providing for her son, and that plan recently included 10 weeks spent at Fermilab for a Summer Undergraduate Laboratories Internship (SULI).

“Being at Fermilab was beautiful, and it really made me realize how much I love physics,” Lopez said. “On the other end of the spectrum, it made me realize that I have to think of my future in a tangible way.”

Instead of being an astronaut, now she plans on building the next generation of particle detectors. Lopez is reaching that goal by coupling her love of physics with practical trade skills such as coding, which she picked up at Fermilab as part of her research developing new ways to visualize data for the MINERvA neutrino experiment.

“The main goal of it was to try to make the data that the MINERvA project was getting a lot easier to read and more presentable for a web-based format,” Lopez said. Interactive, user-friendly data may be one way to generate interest in particle physics from a more diverse audience. Lopez had no previous coding experience but quickly realized at Fermilab that it would allow her to make a bigger difference in the field.

Dominic, meanwhile, spent the summer with his grandparents in New Mexico. That was hard, Lopez said, but she received a lot of support from Internship Program Administrator Tanja Waltrip.

“I was determined to not let her miss this opportunity, which she worked so hard to acquire,” Waltrip said. Waltrip coordinates support services for interns like Lopez in 11 different programs hosted by Fermilab.

Less than 10 percent of applicants were accepted into Fermilab’s summer program. SULI is funded by the U.S. Department of Energy, so many national labs host these internships, and applicants choose which labs to apply to.

“There was never a moment when anyone doubted or said I couldn’t do it,” Lopez said. Dominic doesn’t understand why his mom was gone this summer, but he made sure to give her the longest hug of her life when she came back. For her part, Lopez was happy to bring back a brighter future for her son.

Troy Rummler

Share