• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Flip
  • Tanedo
  • USLHC
  • USA

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Karen
  • Andeen
  • Karlsruhe Institute of Technology

Latest Posts

  • Seth
  • Zenz
  • USLHC
  • USA

Latest Posts

  • Alexandre
  • Fauré
  • CEA/IRFU
  • FRANCE

Latest Posts

  • Jim
  • Rohlf
  • USLHC
  • USA

Latest Posts

  • Emily
  • Thompson
  • USLHC
  • Switzerland

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Ken Bloom | USLHC | USA

Read Bio

A quick ski through history

Sunday, March 23rd, 2014

This past week about 175 lucky particle physicists gathered in La Thuile, a mountain town in the Italian Alps, for one of the annual Rencontres de Moriond conferences. This is one of the highlights of the particle-physics calendar, perhaps the most important gathering of particle physicists between the summer-time Lepton-Photon and ICHEP conferences for the presentation of new results. The major experimental collaborations of the world have been wrapping up a flurry of activity in preparation for the high-profile meetings taking place over the next few weeks. The atmosphere on the LHC experiments has been a bit less intense this year than last year, as the flashiest results from the 2010-12 data sample have already been released, but there was still a push to complete as many measurements as possible for presentation at this conference in particular.

I’ve only been to a Moriond conference once, but it was quite an experience. The conference is held at a ski resort to encourage cameraderie and scientific exchanges outside the conference room, and that leads to an action-packed week. Each morning of the week opens with about three hours of scientific presentations. The mid-morning finish allows for an almost-full day of skiing for those who chose to go (and as you might imagine, many do). This is a great opportunity to spend leisure time with colleagues, meet new people and discuss what had been learned that morning. After the lifts have closed, everyone returns to the hotel for another three hours of presentations. This is followed by a group dinner to continue the conversation. Everyone who has the chance to go realizes that they are very lucky to be there, but at the same time it is a rather exhausting experience! Or, as Henry Frisch, my undergraduate mentor and a regular Moriond attendee, once told me, “There are three things going on at Moriond — the physics, the skiing, and the food — and you can only do two out of the three.” (I skipped lunch on most days.)

As friends were getting ready to head south from CERN through the Mont Blanc tunnel to Italy (and as I was getting ready for my first visit to the United States in more than seven months, for the annual external review of the US LHC operations programs), I realized that it has in fact been ten years since the Moriond conference I went to. Thankfully, the conference organizers have maintained the conference website from 2004, allowing me to relive my presentation from that time. It is a relief to observe that our understanding of particle physics has advanced quite a bit since then! At that Moriond, the Tevatron was just starting to kick into gear for its “Run 2,” and during the previous year we had re-established the signal for the top quark that had first been observed in the mid-1990s. We were just starting to explore the properties of the top quark, but we were hampered by the size of the data sample at that point. It is amusing to look back and see that we were trying to measure the mass of the top quark with a mere six dilepton decay events! Over the coming years, the Tevatron would produce hundreds more such events, and the CDF and D0 experiments would complete the first thorough explorations of the top quark, demonstrating that its properties are totally in line with the predictions of the standard model. And since then, the LHC has done the Tevatron one better, thanks to both an increase in the top-quark production rate at the higher LHC energy and the larger LHC collision rate. The CMS top-quark sample now boasts about 70,000 dilepton candidate events, and the CMS measurement of the top-quark mass is now the best in the world.

Top-quark physics is one of the topics I’m most familiar with, so it is easy for me to mark progress there, but of course it has been a remarkable decade of advances for particle physics, with the discovery of the Higgs boson, a more thorough understanding of neutrino masses and mixing, and constraints on the properties of dark matter. Next year, the LHC will resume operations in its own “Run 2″, with an even higher collision energy and higher collision rates than we had in 2012. It is a change almost as great as that we experienced in moving from the Tevatron to the first run of the LHC. I cannot wait to see how the LHC will be advancing our knowledge of particle physics, possibly through the discovery of new particles that will help explain the puzzles presented by the Higgs boson. You can be sure that there will be a lot of excited chatter on the chair lifts around the dinner table at the 2016 Moriond conferences!

Share

Dear Google: Hire us!

Monday, March 3rd, 2014

In case you haven’t figured it out already from reading the US LHC blog or any of the others at Quantum Diaries, people who do research in particle physics feel passionate about their work. There is so much to be passionate about! There are challenging intellectual issues, tricky technical problems, and cutting-edge instrumentation to work with — all in pursuit of understanding the nature of the universe at its most fundamental level. Your work can lead to global attention and support Nobel Prizes. It’s a lot of effort put in over long days and nights, but there is also a lot of satisfaction to be gained from our accomplishments.

That being said, a fundamental truth about our field is that not everyone doing particle-physics research will be doing that for their entire career. There are fewer permanent jobs in the field than there are people who are qualified to hold them. It is certainly easy to do the math about university jobs in particular — each professor may supervise a large number of PhD students in his or her career, but only one could possibly inherit that job position in the end. Most of our researchers will end up working in other fields, quite likely in the for-profit sector, and as a field we do need to make sure that they are well-prepared for jobs in that part of the world.

I’ve always believed that we do a good job of this, but my belief was reinforced by a recent column by Tom Friedman in The New York Times. It was based around an interview with the Google staff member who oversees hiring for the company. The essay describes the attributes that Google looks for in new employees, and I couldn’t help but to think that people who work in the large experimental particle physics projects such as those at the LHC have all of those attributes. Google is not just looking for technical skills — it goes without saying that they are, and that particle physicists have those skills and great experience with digesting large amounts of computerized data. Google is also looking for social and personality traits that are also important for success in particle physics.

(Side note: I don’t support all of what Friedman writes in his essay; he is somewhat dismissive of the utility of a college education, and as a university professor I think that we are doing better than he suggests. But I will focus on some of his other points here. I also recognize that it is perhaps too easy for me to write about careers outside the field when I personally hold a permanent job in particle physics, but believe me that it just as easily could have wound up differently for me.)

For example, just reading from the Friedman column, one thing Google looks for is what is referred to as “emergent leadership”. This is not leadership in the form of holding a position with a particular title, but seeing when a group needs you to step forward to lead on something when the time is right, but also to step back and let someone else lead when needed. While the big particle-physics collaborations appear to be massive organizations, much of the day to day work, such as the development of a physics measurement, is done in smaller groups that function very organically. When they function well, people do step up to take on the most critical tasks, especially when they see that they are particularly positioned to do them. Everyone figures out how to interact in such a way that the job gets done. Another facet of this is ownership: everyone who is working together on a project feels personally responsible for it and will do what is right for the group, if not the entire experiment — even if it means putting aside your own ideas and efforts when someone else clearly has the better thing.

And related to that in turn is what is referred to in the column as “intellectual humility.” We are all very aggressive in making our arguments based on the facts that we have in hand. We look at the data and we draw conclusions, and we develop and promote research techniques that appear to be effective. But when presented with new information that demonstrates that the previous arguments are invalid, we happily drop what we had been pursuing and move on to the next thing. That’s how all of science works, really; all of your theories are only as good as the evidence that supports them, and are worthless in the face of contradictory evidence. Google wants people who take this kind of approach to their work.

I don’t think you have to be Google to be looking for the same qualities in your co-workers. If you are an employer who wants to have staff members who are smart, technically skilled, passionate about what they do, able to incorporate disparate pieces of information and generate new ideas, ready to take charge when they need to, feel responsible for the entire enterprise, and able to say they are wrong when they are wrong — you should be hiring particle physicists.

Share

No cream, no sugar

Monday, January 6th, 2014

My first visit to CERN was in 1997, when I was wrapping up my thesis work. I had applied for, and then was offered, a CERN fellowship, and I was weighing whether to accept it. So I took a trip to Geneva to get a look at the place and make a decision. I stayed on the outskirts of Sergy with my friend David Saltzberg (yes, that David Saltzberg) who was himself a CERN fellow, and he and other colleagues helped set up appointments for me with various CERN physicists.

Several times each day, I would use my map to find the building with the right number on it, and arrive for my next appointment. Invariably, I would show up and be greeted with, “Oh good, you’re here. Let’s go get a coffee!”

I don’t drink coffee. At this point, I can’t remember why I never got started; I guess I just wasn’t so interested, and may also have had concerns about addictive stimulants. So I spent that week watching other people drink coffee. I learned that CERN depends on large volumes of coffee for its operation. It plays the same role as liquid helium does for the LHC, allowing the physicists to operate at high energies and accelerate the science. (I don’t drink liquid helium either, but that’s a story for another time.)

Coffee is everywhere. In Restaurant 1, there are three fancy coffee machines that can make a variety of brews. (Which ones? You’re asking the wrong person.) At breakfast time, the line for the machines stretches across the width of the cafeteria, blocking the cooler that has the orange juice, much to my consternation. Outside the serving area, there are three more machines where one can buy a coffee with a jeton (token) that can be purchased at a small vending machine. (I don’t know how much they cost.) After lunch, the lines for these machines clogs the walkway to the place where you deposit your used trays.

Coffee goes beyond the restuarants. Many buildings (including out-of-the-way Building 8, where my office is) have small coffee areas that are staffed by baristas (I suppose) at peak times when people who aren’t me want coffee. Building 40, the large headquarters for the CMS and ATLAS experiments, has a big coffee kiosk, where one can also get sandwiches and small pizzas, good when you want to avoid crazy Restaurant 1 lunchtimes and coffee runs. People line up for coffee here during meeting breaks, which usually puts us even further behind schedule.

Being a non-drinker of coffee can lead to some social discomfort. When two CERN people want to discuss something, they often do it over coffee. When someone invites me for a chat over coffee, I gamely say yes. But when we meet up I have to explain that I don’t actually drink coffee, and then sit patiently while they go to get a cup. I do worry that the other person feels uncomfortable about me watching them drink coffee. I could get a bottle of water for myself — even carbonated water, when I feel like living on the edge — but I rarely do. My wife (who does drink coffee, but tolerates me) gave me a few jetons to carry around with me, so I can at least make the friendly gesture of buying the other person’s coffee, but usually my offer is declined, perhaps because the person knows that he or she can’t really repay the favor.

So, if you see a person in conversation in the Restaurant 1 coffee area, not drinking anything but nervously twiddling his thumbs instead, come over and say hello. I can give you a jeton if you need one.

Share

Will the car start?

Saturday, November 9th, 2013

While my family and I are spending a year at CERN, our Subaru Outback is sitting in the garage in Lincoln, under a plastic cover and hooked up to a trickle charger. We think that we hooked it all up right before going, but it’s hard to know for sure. Will the car start again when we get home? We don’t know.

CMS is in a similar situation. The detector was operating just fine when the LHC run ended at the start of 2013, but now we aren’t using it like we did for the previous three years. It’s basically under a tarp in the garage. When proton collisions resume in 2015, the detector will have to be in perfect working order again. So will this car start after not being driven for two years?

Fortunately, we can actually take this car out for a drive. This past week, CMS performed an exercise known as the Global Run in November, or GRIN. (I know, the acronym. You are wondering, if it didn’t go well, would we call it FROWN instead? That too has an N for November.) The main goal of GRIN was to make sure that all of the components of CMS could still operate in concert. In fact, many pieces of CMS have been run during the past nine months, but independently of one another. Actually making everything run together is a huge integration task; it doesn’t just happen automatically. All of the readouts have to be properly synchronized so that the data from the entire detector makes sense. In addition, GRIN was a chance to test out some operational changes that the experiment wants to make for the 2015 run. It may sound like it is a while away, but anything new should really be tested out as soon as possible.

On Friday afternoon, I ran into some of the leaders of the detector run coordination team, and they told me that GRIN had gone very well. At the start, not every CMS subsystem was ready to join in, but by the end of the week, the entire detector was running together, for the first time since the end of collisions. Various problems were overcome along the way — including several detector experts getting trapped in a stuck elevator. But they believe that CMS is in a good position to be ready to go in 2015.

As a member of CMS, that was really encouraging news. Now, if only the run coordinators could tell me where I left the Subaru keys!

Share

2013 Nobel Prize — Made in America?

Tuesday, October 8th, 2013

You’re looking at the title and thinking, “Now that’s not true! Francois Englert is Belgian, and Peter Higgs is from the UK. And CERN, where the Higgs discovery was made, is a European lab, not in the US.”

That is all true, but on behalf of the US LHC blog, let’s take a few minutes to review the role of the United States in the Higgs observation that made this prize possible. To be sure, the US was part of an international effort on this, with essential contributions from thousands of people at hundreds of institutes from all over the world, and the Nobel Prize is a validation of the great work of all of them. (Not to mention the work of Higgs, Englert and many other contributing theorists!) But at the same time, I do want to combat the notion that this was somehow a non-US discovery (as some have implied). For many more details, see this link.

US collaborators, about 2000 strong, are a major contingent within both of the biggest LHC experiments, ATLAS and CMS. I’m a member of CMS, where people from US institutions are about one third of the membership of the collaboration. This makes the US physicists the largest single national contingent on the experiment — by no means a majority, but because of our size we have a critical role to play in the construction and operation of the experiment, and the data analysis that follows. American physicists are represented throughout the management structure (including Joe Incandela, the current CMS spokesperson) and deep in the trenches.

While the detectors were painstakingly assembled at CERN, many of the parts were designed, prototyped and fabricated in the US. On CMS, for instance, there has been US involvement in every major piece of the instrument: charged particle tracking, energy measurements, muon detection, and the big solenoid magnet that gives the experiment its name. Along with the construction responsibilities come maintenance and operational responsibilities too; we expect to carry these for the lifetime of the experiment.

The data that these amazing instruments record must then be processed, stored, and analyzed. This requires powerful computers, and the expertise to operate them efficiently. The US is a strong contributor here too. On CMS, about 40% of the data processing is handled at facilities in the US. And then there is the last step in the chain, the data analysis itself that leads to the measurements that allow us to claim a discovery. This is harder to quantify, but I can’t think of a single piece of the Higgs search analysis that didn’t have some US involvement.

Again, this is not to say that the US is the only player here — just to point out that thanks to the long history that the United States has in supporting this science, the US too can share some of the glory of today’s announcement.

Share

Another day at the office

Tuesday, October 8th, 2013

I suppose that my grandchildren might ask me, “Where were you when the Nobel Prize for the Higgs boson was announced?” I was at CERN, where the boson was discovered, thus giving the observational support required for the prize. And was I in the atrium of Building 40, where CERN Director General Rolf Heuer and hundreds of physicists had gathered to watch the broadcast of the announcement? Well no; I was in a small, stuffy conference room with about twenty other people.

We were in the midst of a meeting where we were hammering out the possible architecture of the submission system that physicists will be using to submit computing jobs for analyzing the data in the next LHC run and beyond. Not at all glamorous, I know. But that’s my point: the work that is needed to make big scientific discoveries, be it the Higgs or whatever might come next (we hope!) usually not the least bit glamorous. It’s a slog, where you have to work with a lot of other people to figure out all the difficult little details. And you really have to do this day after day, to make the science work. And there are many aspects of making science work — building advanced scientific instruments, harnessing the power of computers, coming up with clever ways to look at the data (and not making mistakes while at it), and working with colleagues to build confidence in a measurement. Each one of them takes time, effort and patience.

So in the end, today was just another day at the office — where we did the same things we’ve been doing for years to make this Nobel Prize possible, and are laying the groundwork for the next one.

Share

CERN’s universe is ours!

Sunday, September 29th, 2013

This past weekend, CERN held its first open days for the public in about five years. This was a big, big deal. I haven’t heard any final statistics, but the lab was expecting about 50,000 visitors on each of the two days. (Some rain on Sunday might have held down attendance.) Thus, the open days were a huge operation — roads were shut down, and Transports Publics Genevois was running special shuttle buses amongst the Meyrin and Previssen sites and the access points on the LHC ring. The tunnels were open to people who had reserved tickets in advance — a rare opportunity, and one that is only possible during a long shutdown such as the one currently underway.

A better CERN user than me would have volunteered for the open days. Instead, I took my kids to see the activities. We thought that the event went really well. I was bracing for it to be a mob scene, but in the end the Meyrin site was busy but not overrun. (Because the children are too small, we couldn’t go to any of the underground areas.) There were many eager orange-shirted volunteers at our service, as we visited open areas around the campus. We got to see a number of demonstrations, such as the effects of liquid-nitrogen temperatures on different materials. There were hands-on activities for kids, such as assembling your own LHC and trying to use a scientific approach to guessing what was inside a closed box. Pieces of particle detectors and LHC magnets were on display for all to see.

But I have to say, what really got my kids excited was the Transport and Handling exhibit, which featured CERN’s heavy lifting equipment. They rode a scissors lift that took them to a height of several stories, and got to operate a giant crane. Such a thing would never, ever happen in the US, which has a very different culture of legal liability.

I hope that all of the visitors had a great time too! I anticipate that the next open days won’t be until the next long shutdown, which is some years away, but it will be well worth the trip.

Share

Aces high

Thursday, September 19th, 2013

Much as I love living in Lincoln, Nebraska, having a long residence at CERN has some advantages. For instance, we do get much better traffic of seminar and colloquium speakers here. (I know, you were thinking about chocolate.) Today’s colloquium in particular really got me thinking about how we do, or don’t, understand particle physics today.

The speaker was George Zweig of MIT. Zweig has been to CERN before — almost fifty years ago, when he was a postdoctoral fellow. (This was his first return visit since then.) He had just gotten his PhD at Caltech under Richard Feynman, and was busy trying to understand the “zoo” of hadronic particles that were being discovered in the 1960′s. (Side note: Zweig pointed out today that at the time there were 26 known hadronic particles…19 of which are no longer believed to exist.) Zweig developed a theory that explained the observations of the time by positing a set of hadronic constituents that he called “aces”. (He thought there might be four of them, hence the name.) Some particles were made of two aces (and thus called “deuces”) and others were made of three (and called “trays”). This theory successfully explained why some expected particle decays didn’t actually happen in nature, and gave an explanation for differences in masses between various sets of particles.

Now, reading this far along, you might think that this sounds like the theory of quarks. Yes and no — it was Murray Gell-Mann who first proposed quarks, and had similar successful predictions in his model. But there was a critical difference between the two theories. Zweig’s aces were meant to be true physical particles — concrete quarks, as he referred to them. Gell-Mann’s quarks, by contrast, were merely mathematical constructs whose physical reality was not required for the success of the theory. At the time, Gell-Mann’s thinking held sway; I’m no expert on the history of this period of history in theoretical particle physics. But my understanding was that the Gell-Mann approach was more in line with the theory fashions of the day, and besides, if you could have a successful theory that didn’t have to introduce some new particles that were themselves sketchy (their electric charges had to be fractions of the electron charge, and they apparently couldn’t be observed anyway), why would you?

Of course, we now know that Zweig’s interpretation is more correct; this was even becoming apparent a few short years later, when deep-inelastic scattering experiments at SLAC in the late 1960′s discovered that nucleons had smaller constituents, but at that time it was controversial to actually associate those with the quarks (or aces). For whatever reason, Zweig left the field of particle physics and went on to a successful career as a faculty member at MIT, doing work in neurobiology that involved understanding the mechanisms of hearing.

I find it a fascinating tale of how science actually gets done. How might it apply to our science today? A theory like the standard model of particle physics has been so well tested by experiment that it is taken to be true without controversy. But theories of physics beyond the standard model, the sort of theories that we’re now trying to test at the LHC, are much less constrained. And, to be sure, some are more popular than others, because they are believed to have some certain inherent beauty to them, or because they fit well with patterns that we think we observe. I’m no theorist, but I’m sure that some theories are currently more fashionable than others. But in the absence of experimental data, we can’t know that they are right. Perhaps there are some voices that are not being heard as well as they need to be. Fifty years from now, will we identify another George Zweig?

Share

Prioritizing the future

Monday, September 9th, 2013

As I’ve discussed a number of times, the United States particle physics community has spent the last nine months trying to understand what the exciting research and discovery opportunities are for the next ten to twenty years, and what sort of facilities might be required to exploit them. But what comes next? How do we decide which of these avenues of research are the most attractive, and, perhaps most importantly, can be achieved given that we work within finite budgets, need the right enabling technologies to be available at the right times, and must be planned in partnership with researchers around the world?

In the United States, this is the job of the Particle Physics Project Prioritization Panel, or P5. What is this big mouthful? First, it is a sub-panel of the High Energy Physics Advisory Panel, or HEPAP. HEPAP is the official body that can advise the Department of Energy and the National Science Foundation (the primary funders of particle physics in the US, and also the sponsors of the US LHC blog) on programmatic direction of the field in the US. As an official Federal Advisory Committee, HEPAP operates in full public view, but it is allowed to appoint sub-panels that are under the control of and report to HEPAP but have more flexibility to deliberate in private. This particular sub-panel, P5, was first envisioned in a report of a previous HEPAP sub-panel in 2001 that looked at, among other things, the long-term planning process for the field. The original idea was that P5 would meet quite regularly and continually review the long-term roadmap for the field and adjust it according to current conditions and scientific knowledge. However, in reality P5′s have been short-lived and been re-formed every few years. The last P5 report dates from 2008, and obviously a lot has changed since then — in particular, we now know from the LHC that there is a Higgs boson that looks like the one predicted in the standard model, and there have been some important advances in our understanding of neutrino mixing. Thus the time is ripe to take another look at the plan.

And so it is that a new P5 was formed last week, tasked with coming up with a new strategic plan for the field “that can be executed over a 10 year timescale, in the context of a 20-year global vision for the field.” P5 is supposed to be taking into account the latest developments in the field, and use the Snowmass studies as inputs. The sub-panel is to consider what investments are needed to fulfill the scientific goals, what mix of small, medium and large experiments is appropriate, and how international partnerships can fit into the picture. Along the way, they are also being asked to provide a discussion of the scientific questions of the field that is accessible to non-specialists (along the lines of this lovely report from 2004) and articulate the value of particle-physics research to other sciences and society. Oh, and the sub-panel is supposed to have a final report by May 1. No problem at all, right?

Since HEPAP’s recommendations will drive the the plan for the field, it is very important that this panel does a good job! Fortunately, there are two good things going for it. First, the membership of the panel looks really great — talented and knowledgeable scientists who are representative of the demographics of the field and include representatives from outside the US. Second, they are being asked to make their recommendations in the context of fairly optimistic budget projections. Let us only hope that these come to pass!

Watch this space for more about the P5 process over the coming eight months.

Share

Snowmass: in Frontierland

Tuesday, August 6th, 2013

What an interesting but exhausting week it has been here at the Snowmass workshop in Minneapolis. I wrote last week about the opening of the workshop. In the following days, we followed what seemed to me like a pretty original schedule for a workshop. Each morning, we bifurcated (or multi-furcated, if that’s a word) into overlapping parallel sessions in which the various working groups were trying to finalize their studies. There were joint sessions between groups, in which, for instance, people studying some physics frontier were interacting with the people studying the facilities or instrumentation needed to realize the physics goals. Every afternoon we have gathered for plenary (or semi-plenary) sessions, featuring short talks on the theory and experimental work undergirding some physics topic, followed by a discussion of “tough questions” about the topic that challenged its importance in the grand scheme of things and the value of pursuing an experimental program on it. We would close each day with a panel discussion on broader policy questions, such as what is the proper balance between domestic and off-shore facilities, or how to make the case for long-term science.

It is a lot of work to put together and participate in a program like this, and overall everyone did a great job of giving well-prepared and thoughtful presentations. I should also take this opportunity to thank our hosts at the University of Minnesota for their successful management of a complicated and ever-evolving program that involved 700 physicists, most of whom registered at the last minute. (And special personal thanks to my Minneapolis in-laws, who made my visit easy!)

We’ve now gotten through the closing sessions, in which we heard summary reports from all the “frontier” working groups. I’m still digesting what everyone had to say, but here is one thing I think I know: there is general agreement that the frontiers that we are organizing our science around are not themselves science topics but approaches that can tell us about many different topics in different ways. For instance, I was quite taken with the news that cosmology can help us set bounds on the total mass of the different kinds of neutrinos; this will help us understand the neutrino spectrum with complementary information to that provided by accelerator-based neutrino experiments. Everyone is really looking to the other “frontiers” to see how we can create a program of research that can attack important physics questions in the most comprehensive possible way. And I think that a number of speakers have gone out of their way to point out that discoveries on someone else’s “frontier” may fundamentally change our understanding of the world.

(On a related note, it is also clear that we are all bothered by the tyranny of Venn diagrams. I am hoping to find time to write again about how many times a graphic of three intersecting circles appeared over the course of the week, and what amount of irony was implied each time.)

Since this the US LHC blog, I should also mention that the LHC came out well in the discussions. It is clear that there is a lot of potential for understanding and discovery at this machine, both when we increase the energy in 2015 and when we (hopefully) run in a high-luminosity mode later on in which we will attempt to increase the size of the dataset by a factor of ten. We expect to learn a tremendous amount about the newly-discovered, very strange Higgs boson, and hope to discover TeV-scale particles that make it possible for the Higgs to be what it is. From a more practical point of view, it is currently the only high-energy particle collider operating in this world, and it will stay this way for at least a decade. We must do everything we can to exploit the capabilities of this unique facility.

Where do we go from here? The results of the workshop, the handiwork of hundreds of physicists working over the course of a year, will get written up as a report that is meant to inform future deliberations. It is quite clear that we have more projects that have great physics potential, and that we really want to execute, than we have the resources to execute. In some ways, it is a good problem to have. But some hard choices will have to be made, and it won’t be long until we have convened a Particle Physics Project Prioritization Panel that will be charged with making recommendations on how we do this. I’m in no position to guess the outcome, but whatever it turns out to be, I suspect that our entire field is going to have to stand behind it and advocate it if we are to realize any, if not all, of our visions of the frontiers of particle physics.

Share