Get the latest news from the world’s biggest science lab! All the facts, all the truth, totally verified and true beyond all reasonable doubt. 85% official news. Brought to you by the team that revealed Elvis landing on the moon.
ATLAS to install neutrino calorimeters
The ATLAS detector is currently the largest experiment on the CERN site, weighing over 7,000 tonnes, spanning 50 m across and almost 50 m long. It can detect nearly all particles produced in the record breaking high energy collisions provided by the LHC. These particles have strange names like the electron, proton, pion, Ξ(1530)3/2+, photon, friton, demi-semi-lepton and Boris. But there is a big problem, which becomes more pressing as we reach higher and higher energies, and that is the neutrino. This is a tiny, neutral, almost massless particle that was predicted in 1930, and it comes in different flavours (the most popular being mint.) The ATLAS Collaboration has an ambitious plan to extend the capabilities of its detector by being the first such general purpose detector to install neutrino calorimeters. At the moment a neutrino is seen as “missing transverse energy”, and that makes it really hard to find new particles.
ATLAS Spokesperson, Dave Charlton, said “Look I really don’t have time for this, I have to go to a meeting!”. After reporters blocked his path and stole his CERN card he added “Fine, how about ‘This is a very exciting time for ATLAS and we are happy to be leading the field in this area. Detecting neutrinos will open up new parameter space and allow to perform searches never seen before.’ Now give me my CERN card, the Weekly meeting cannot start without me.” By seeing neutrinos directly, physicists would be able to observe the annoying neutrino backgrounds that get in the way of dark matter searches. They could count the neutrinos directly to see if they agree with long standing predictions.

Proposals for the new ATLAS neutrino calorimeters
But not everyone is happy with the proposal. We spoke to a neutrino expert, and after she closed the door on us, we went to Wikipedia. Apparently neutrinos are so bad at interacting that they need about one light years of lead before they can be seen. This would have some impact on the local (and not so local) area. We spoke with a representative from Geneva Airport. He said “If the proposed plans are succesful this would mean moving Geneva Airport. The people and businesses of Geneva rely on the airport for connections with the rest of the world. It would be very inconvenient and not very efficient to commute a light year to reach the airport. Most rental car contracts will not allow you travel that far.”
It’s not yet clear where the supply of lead will come from. A sphere of solid lead would contain more than the global supply, even if every atom was liberated from the Earth’s crust. We would need 38 orders of magnitude more than there is on the planet. That’s more than a million million million. It’s lots. There is also a problem with the sheer size of the proposal. “There are problems we still have to solve”, said an ATLAS physicist “We have a Solar Passage Working Group, and NASA is helping us deal with other local astronomical bodies that might pose impact challenges. Trigger is an issue. Right now it takes about 100 milliseconds to trigger an event. With the new neutrino calorimeters it could take up to 3 years.”
The proposals, if approved, will be implemented by 2600.
CMS developing “truth matching” for data
For decades the CMS Collaboration has used a common tool known as “truth matching” with its simulation studies. Every particle in a simulation has information associated with it, including its mass, energy, charge, momentum, spin, and favourite movies. All these quantities have to be estimated using measurements from the simulated detector, so they are never perfectly known. However with a simulation you can match up the particles to what really happened with the so-called “truth record”, and this is what we call truth matching. If you have a particle travelling with a certain momentum in a certain direction you can compare it to the truth record and find out exactly what kind of particle it is. That means you no longer need those tricky identification algorithms, and you can remove background processes trivially.
“This makes my analysis super easy!” said one CMS student. “I might even graduate next week.” Truth matching has been applied to simulations for several decades, and it it is unique in being the only method that has not also been applied to data. Everything else, from machine learning to Bayesian analysis, have been developed using simulation before being moved over to real data. By employing ouija boards, dowsing techniques, and Feng Shui, CMS psychics have reported initial success. “There are definitely a lot of protons in the LHC beam.” one said. The LHC beam does indeed contain about a million million protons per bunch, and this has been seen by some as a sign of confirmation of the method. Others are more skeptical. “Those protons could have come from the magnets or the pipes. There’s a lot of matter in these tunnels. The results prove nothing.”

One of the first complete data events to be truth matched, a diphoton Higgs decay
If the truth matching of data is successful, it could lead to a revolution in particle physics. Detectors could be slimmed down, time could be saved in the analysis process, and the peer review process would be streamlined. “Rather than having to measure the levels of signal and background, a process that can take months, we can simply count how many electrons bosons we have.” The initial findings are only the first step, and there are plans to extend the data truth matching to more complex final states. It’s expected that by 2019 the CMS Collaboration will be able to truthmatch Higgs bosons, top quarks, and even new particles we’ve never seen before.
A tearful Polish professor, who pioneered the use of the famous ‘pseudorapidity’ variable said “I have been waiting for this breakthrough my entire career. This will make the lives of so many scientists so much simpler.”
LHCb made a big blunder, and you won’t believe what it is!
Senior LHCb physicists were left red faced today when they discovered a terrible blunder. “How could we not have seen this?” Spokesperson Guy Wilkinson said. “It’s been staring us in the face for years” blurted Operations Coordinator Barbara Storaci.
LHCb, a huge science machine that lives underground on the Franco-Swiss border, is hiding a huge secret. Sources on reddit tell us “This kind of hting happens al the time. The Eiffel Tower was bilt up-side-down for the frist few weeks.” and “OMG! WTF? ORLY?”
Can you see what’s wrong with this picture? 98% of people can’t!

The LHCb schematic, with the approved geometry
It turns out that when LHCb was made, the engineers only built half a detector. “Now I see it I can’t unsee it!” exclaimed a postdoc, spilling crepe on the table as he spoke.
“It may be true that we only built half a detector”, an anonymous researcher said “but at least it was the forward half.” So far there are no plans to correct the problem, and the Collaboration has already produced hundreds of world class papers with the current detector and shows no signs of stopping.
ALICE alchemists quit after years of research
A team of alchemists working on the ALICE Collaboration have today announced that their research program will end today. The collection of six pesudoscientists, a small minority of the total Collaboration, are hanging up their lab coats after declaring their research “unworkable” and “a total abysmal failure”. The ALICE Collaboration investigates the collisions of Lead ions with other particles in the LHC. The Collaboration has been responsible for a wide range of discoveries concerning the quark-gluon plasma, which is a form of primordial matter from the early universe.

The STAR experiment contained real Gold atoms
However it is not the quark-gluon plasma that the small band of alchemists are studying. Instead they want to turn the Lead into Gold, and they want to use the LHC to do it. Most of them came from the previous generation of ion collider experiments, based in Brookhaven, New York. At those facilities there was an abundance of Gold in the experimental apparatus, and it the alchemists looked to replicate this success.
“I just don’t understand” said Bob Bobbatrop, the Master Mage “we had so much success with the RHIC accelerator! The LHC must be producing negative energy fields and the crystals in our detector must be misaligned.” ALICE Spokesperson, Paolo Giubellino, was quick to distance himself from the misfit alchemists. “They are not representative of the Collaboration as a whole, and frankly, I don’t know how they got in here in the first place. The RHIC facility in Brookhaven collided Gold ions, so of course these so-called alchemists found Gold. They’d have to be even stupider not to find it there! This is why we have a peer review process. We’ve even started to arrange psuedomeetings in a local coffee shop where they present their results, and they haven’t yet noticed that most of the people listening are tourists. Even the local barista rolls her eyes when they talk. Meanwhile we can get on with the real research.”
But like a gauge violating wavefunction, Bob Bobbatrop is not phased. “We have vastly superior software! When we need a random number we don’t rely on a C++ library, we use a 20 sided die. You can’t get more serious than that.”
Cryogenics team start charity drive
Do you have any old, unwanted fridge magnets? You can send them to CERN! Last year the cryogenics team at CERN faced problems that lead to the failure of some magnets. Now, a charity drive is starting where you can donate your old magnets, and these will be attached to the outside of failing magnets to give them a boost. “We accept any magnets! That magnet you purchased on vacation? Yes, we’ll take it. Do you have magnetic letters? We will take those too.”

Donated magnets in the staging and testing area
Some magnets are more useful than others. Magnets with mini thermometers can help engineers keep track of the state of the supercooled LHC magnets. The resident artists at CERN have expressed an interest in the magnetic “fridge poetry” packs. Magnets that feature cats will be used in the RF cavity sector. So please, take a look at your fridge, and see if you really need that snow globe magnet from Oslo, or that hula girl magnet from Hawai’i. Why leave it sitting in your kitchen when it can be helping research on the world’s largest machine?
Creative solution to poster defacement row
In recent weeks the media has reported on defacement of the LGBT CERN posters at the lab, with many being removed or subject to grafitti. CERN Director General, Fabiola Gianotti, has taken these incidents very seriously. “The targeting of a single group of posters for abuse like this unacceptable” she said, “and so I have made the decision that from now on, all types posters at CERN will be removed or defaced. CERN is a lab of equal opportunities, and it must be free from discrimination.”
Teams of administrators, including Gianotta herself, have been seen walking the corridors of CERN and instituting this new policy. Posters announcing a SUSY conference have had “NO MORE SYMMTRY BRAKING HERE!!1!” scrawled across them, and a poster advertising a symposium on solar neutrinos was subjected to “Go back to where you came from. The sun.” written on it. Even parking signs are not immune, with slogans such as “Parking? More like… splarking!” and a fire exit sign was seen with a neatly written note underneath saying “They had fire in Hitler’s Germany too, you know”.

One of the many posters subject to the new policy
By attacking all signs and posters at the lab, the aim is to make nobody feel victimised or isolated. Staff are encouraged to use their own initiative and are recommended to mutter incoherently under their breath as they do so. “If nothing else” one technician said “it’s made the lab more surreal. I don’t even know how much a coffee is anymore. Apparently it’s now one ‘WHY ARE YOU READING THIS?!’, but it used to be 1.60 CHF.”
LIGO result explained
In February 2016, the LIGO experiment announced it had observed gravitational waves, predicted over a century ago by Albert Einstein’s theory of general relativity. The discovery is thought to have come from the merging of two massive black holes, from over a billion light years away. However, two students have come forward to say that they created the waves in their apartment, using a waffle iron, an iPhone, and the cluck of a chicken. “We’ve been working on this prank for weeks” said the first student, “and we had no idea it would be taken seriously!” The second student added “We had to eat so many Pringles to get enough tubes for the wave generator.”

Captain McNuggets, relaxing in the garden
The real hero of the story is their chicken, Captain McNuggets, who made the characteristic “chirp” sound. So did LIGO really detect gravitational waves? “Oh, absolutely!” the pair of students replied. The machine they made could produce gravitational waves of any frequency and amplitude desired, but it was only made “for a bit of a laugh” and is unlikely to see further research. The machine itself was dismantled in October to make space for their latest project, the “ballistic taco-launcher”.