• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Posts Tagged ‘dark matter’

To celebrate the first five years of operation on board the International Space Station, Professor Sam Ting, the spokesperson for the Alpha Magnetic Spectrometer (AMS-02) Collaboration just presented their latest results at a recent seminar held at CERN. With a sample of 90 million events collected in cosmic rays, they now have the most precise data on a wide range of particles found in outer space.

ams-02

source: ©NASA

Many physicists wonder if the AMS Collaboration will resolve the enigma on the origin of the excess of positrons found in cosmic rays. Positrons are the antimatter of electrons. Given that we live in a world made almost uniquely of matter, scientists have been wondering for more than a decade where these positrons come from. It is well known that some positrons are produced when cosmic rays interact with the interstellar material. What is puzzling is that more positrons are observed than what is expected from this source alone.

Various hypotheses have been formulated to explain the origin of these extra positrons. One particularly exciting possibility is that these positrons could emanate from the annihilation of dark matter particles. Dark matter is some form of invisible matter that is observed in the Universe mostly through its gravitational effects. Regular matter, everything we know on Earth but also everything found in stars and galaxies, emits light when heated up, just like a piece of heated metal glows.

Dark matter emits no light, hence its name. It is five times more prevalent than regular matter. Although no one knows, we suspect dark matter, just like regular matter, is made of particles but no one has yet been able to capture a particle of dark matter. However, if dark matter particles exist, they could annihilate with each other and produce an electron and a positron, or a proton and antiproton pair. This would at long last establish that dark matter particles exist and reveal some clues on their characteristics.

An alternative but less exotic explanation would be that the observed excess of positrons comes from pulsars. Pulsars are neutron stars with a strong magnetic field that emit pulsed light. But light is made of photons and photons can also decay into an electron and a positron. So both the pulsar and the dark matter annihilation provide a plausible explanation on the source of these positrons.

To tell the difference, one must measure the energy of all positrons found in cosmic rays and see how many are found at high energy. This is what AMS has done and their data are shown on the left plot below, where we see the flux of positrons (vertical axis) found at different energies (horizontal axis). The flux combines the number of positrons found with their energy cube. The green curve gives how many positrons are expected from cosmic rays hitting the interstellar material (ISM).

If the excess of positrons were to come from dark matter annihilation, no positron would be found with an energy exceeding the mass of the dark matter particle. They would have an energy distribution similar to the brown curve on the plot below as expected for dark matter particles having a mass of 1 TeV, a thousand times heavier than a proton. In that case, the positrons energy distribution curve would drop off sharply. The red dots represent the AMS data with their experimental errors shown by the vertical bars. If, on the other end, the positrons came from pulsars, the drop at high energy would be less pronounced.

ams-2016

source: AMS Collaboration

The name of the game is therefore to figure out precisely what is happening at high energy. But there are much fewer positrons there, making it very difficult to see what is happening as indicated by the large error bars attached to the data points at higher energy. These indicate the size of the experimental errors.

But by looking at the fraction of positrons found in all data collected for electrons and positrons (right plot above), some of the experimental errors cancel out. AMS has collected over a million positrons and 16 million electrons. The red dots on the right plot show the fraction of positrons found in their sample as a function of energy. Given the actual precision of these measurements, it is still not completely clear if this fraction is really falling off at higher energy or not.

The AMS Collaboration hopes however to have enough data to distinguish the two hypotheses by 2024 when the ISS will cease operation. These projections are shown on the next two plots both for the positrons flux (left) and the positron fraction (right). As it stands today, both hypotheses are still possible given the size of the experimental errors.

ams-2024

source: AMS Collaboration

There is another way to test the dark matter hypothesis. By interacting with the interstellar material, cosmic rays produce not only positrons, but also antiprotons. And so would dark matter annihilations but pulsars cannot produce antiprotons. If there were also an excess of antiprotons in outer space that could not be accounted for by cosmic rays, it would reinforce the dark matter hypothesis. But this entails knowing precisely how cosmic rays propagate and interact with the interstellar medium.

Using the AMS large sample of antiprotons, Prof. Sam Ting claimed that such excess already exists. He showed the following plot giving the fraction of antiprotons found in the total sample of protons and antiprotons as a function of their energy. The red dots represent the AMS measurements, the brown band, some theoretical calculation for cosmic rays, and the blue band, what could be coming from dark matter.

antiproton-fraction

source: AMS Collaboration

This plot clearly suggests that more antiprotons are found than what is expected from cosmic rays interacting with the interstellar material (ISM). But both Dan Hooper and Ilias Cholis, two theorists and experts on this subject, strongly disagree, saying that the uncertainty on this calculation is much larger. They say that the following plot (from Cuoco et al.) is by far more realistic. The pink dots represent the AMS data for the antiproton fraction. The data seem in good agreement with the theoretical prediction given by the black line and grey bands. So there are no signs of a large excess of antiprotons here. We need to wait for a few more years before the AMS data and the theoretical estimates are precise enough to determine if there is an excess or not.

antiprotons-theorie

source: Cuoco, Krämer and Korsmeier, arXiv:1610.03071v1

The AMS Collaboration could have another huge surprise is stock: discovering the first antiatoms of helium in outer space. Given that anything more complex than an antiproton is much more difficult to produce, they will need to analyze huge amounts of data and further reduce all their experimental errors before such a discovery could be established.

Will AMS discover antihelium atoms in cosmic rays, establish the presence of an excess of antiprotons or even solve the positron enigma? AMS has lots of exciting work on its agenda. Well worth waiting for it!

Pauline Gagnon

To find out more about particle physics and dark matter, check out my book « Who Cares about Particle Physics: making sense of the Higgs boson, the Large Hadron Collider and CERN ».

To be notified of new blogs, follow me on Twitter : @GagnonPauline or sign up on this distribution list

 

Share

Dark Matter: A New Hope

Monday, December 7th, 2015

[Apologies for the title, couldn’t resist the temptation to work in a bit of Star Wars hype]

To call the direct detection of dark matter “difficult” is a monumental understatement. To date, we have had no definite, direct detection on Earth of this elusive particle that we suspect should be all around us. This seems somewhat of a paradox when our best astronomical observations indicate that there’s about five times more dark matter in the universe than the ordinary, visible matter that appears to make up the world we see. So what’s the catch? Why is it so tricky to find?

An enhanced image of the “Bullet Cluster”: two colliding galaxies are observed with ordinary “baryonic” matter (coloured red) interacting as expected and the dark matter from each galaxy, inferred from gravitational lensing (coloured blue), passing straight through one another. Source: NASA Astronomy Picture of the Day 24/08/2006

The difficulty lies in the fact that dark matter does not interact with light (that is, electromagnetically) or noticeably with atoms as we know them (that is, with the strong force, which holds together atomic nuclei). In fact, the only reason we know it exists is because of how it interacts gravitationally. We see galaxies rotate much faster than they would without the presence of some unseen “dark matter”, amongst other things. Unfortunately, none of the particles we know from the Standard Model of particle physics are suitable candidates for explaining dark matter of this sort. There are, however, several attempts in the works to try and detect it via weak nuclear interactions on Earth and pin down its nature, such as the recently approved LUX-ZEPLIN experiment, which should be built and collecting data by 2020.

Direct detection, however, isn’t the only possible way physicists can get a handle on dark matter. In February 2014, an X-Ray signal at 3.5 keV was detected by the XMM-Newton, an X-ray spectroscopy project by the European Space Agency, in orbit around Earth. Ever since, there’s been buzz amongst particle cosmologists that the signal may be from some kind of dark matter annihilation process. One of the strongest candidates to explain the signal has been sterile neutrino, a hypothetical cousin of the Standard Model neutrino. Neutrinos are ghostly particles that also interact incredibly rarely with ordinary matter* but, thanks to the remarkable work of experimentalists, were detected in the late 1950s. Their exact nature was later probed by two famous experiments, SNO and Super-Kamiokande, that demonstrated that neutrinos do in fact have mass, by observing a phenomenon known as Neutrino Oscillations. As reported on this blog in October, the respective heads of each collaboration were awarded the 2015 Nobel Prize in Physics for their efforts in this field.

“Handedness” refers to how a particle spins about the axis it travels along. Standard Model neutrinos (first observed in 1956) are all observed as left handed. Sterile neutrinos, a hypothetical dark matter candidate, would be right-handed, causing them to spin the opposite way along their axes. Image source: ysfine.com

The hope amongst some physicists is that as well as the neutrinos that have been studied in detectors for the last half a century, there exists a sort of heavier “mirror image” to these particles that could act as a suitable dark matter candidate. Neutrinos are only found to “spin” in a certain way relative to the axis of their propagation, while the hypothesised sterile neutrinos would spin the opposite way round (in more technical terms, they have opposite chirality). This difference might seem trivial, but in the mathematical structure underpinning the Standard Model, it would fundamentally change how often these new particles interact with known particles. Although predicted to react incredibly rarely with ordinary matter, there are potentially processes that would allow these sterile neutrinos to emit an X-Ray signal, with half the mass-energy of the original particle. Due to the sheer number of them found in dense places such as the centres of galaxies, where XMM-Newton was collecting data from, in principle such a signal would be measurable from regions with a high density of sterile neutrinos.

This all seems well and good, but how well does the evidence measure up? Since the announcement of the signal, the literature has gone back and forth on the issue, with the viability of sterile neutrinos as a dark matter candidate being brought into question. It is thought that the gravitational presence of dark matter played a crucial role in the formation of galaxies in the early universe, and the best description we have relies on dark matter being “cold”, i.e. with a velocity dispersion such that the particles don’t whizz around at speeds too close to the speed of light, at which point their kinematic properties are difficult to reconcile with cosmological models. However, neutrinos are notorious for having masses so small they have yet to be directly measured and to explain the signal at 3.5 keV, the relevant sterile neutrino would have to have a relatively small mass of ~7 keV/c2, about 15,000 times lighter than the usual prediction for dark matter at ~100 GeV/c2. This means that under the energy predicted by cosmological models for dark matter production, our sterile neutrinos would have a sort of “luke-warm” characteristic, in which they move around at speeds comparable to but not approaching the speed of light.

A further setback has been that the nature of the signal has been called into question, since the resolution of the initial measurements from XMM-Newton (and accompanying X-ray satellite experiments such as Chandra) was not sharp enough to definitively determine the signal’s origin. XMM-Newton built up a profile of X-ray spectra by averaging across measurements from just 73 galaxy clusters, though it will take further measurements to fully rule out the possibility that the signal isn’t from the atomic spectra of potassium and sulpher ions found in hot cosmic plasmas.

But there remains hope.

A recent pre-print to the Monthly Notices of the Royal Astronomical Society (MNRAS) by several leading cosmologists has outlined the compatibility of a 7 keV/c2 sterile neutrino’s involvement with the development of galactic structure. To slow down the sterile neutrinos enough to bring them in line with cosmological observations, “lepton asymmetry” (a breaking of the symmetry between particles and antiparticles) has to be introduced in the model. While this may initially seem like extra theoretical baggage, since lepton asymmetry has yet to be observed, there are theoretical frameworks than can introduce such an asymmetry with the introduction of two much heavier sterile neutrinos at the GeV scale.

A Black Brant XII sounding rocket, similar to the type that could be used to carry microcalorimeters, capable of recording X-ray signals of the type XMM-Newton and Chandra have been observing in galactic nuclei. These rockets are used to conduct scientific experiments in sub-orbital flight, including attempts at dark matter detection. Source: NASA/Wallops

Under such a model, not only could our dark matter candidate be reconciled, but neutrino oscillations could also be explained. Finally, baryogenesis, the description of why there was slightly more matter than antimatter in the early universe, could also find an explanation in such a theory. This would resolve one of the largest puzzles in Physics; the Standard Model predicts nearly equivalent amounts of particles and antiparticles in the early universe which should have annihilated to leave nothing but radiation, rather than the rich and exciting universe we inhabit today. On the experimental side, there are a few proposed experiments to try and measure the X-ray signal more carefully to determine its shape and compare it with the prediction of such models, such as flying rockets around with calorimeters inside to try and pick up the signal by observing a broader section of the sky than XMM or Chandra did.

With the experts’ opinions divided and further research yet to be done, it would be facetious to end this article with any sort of comment on whether the signal can or will gather the support of the community and become verified as a full blown dark matter signal. At time of writing, a paper has been released claiming signal is better explained as an emission from the plasmas found in galactic nuclei. A further preprint to MNRAS, put on arXiv just days ago, claims the sterile neutrino hypothesis is incompatible with the signal but that axions (a dark matter model that supposes a totally different type of particle outside of the Standard Model) remain as a candidate to explain the signal. Perhaps sterile neutrinos, are not the particles we’re looking for.

This kind of endeavour is just one of the hundreds of ways particle physicists and our colleagues in Astrophysics are looking to find evidence of new, fundamental physics. The appeal for me, as someone whose work will probably only have relevance to huge, Earth-bound experiments like the Large Hadron Collider, is the crossover between modelling the birth of colossal objects like galaxies and theories of subatomic particle production, using comparison between the two for consistency. Regardless of whether future rocket-based experiments can gather enough data to fully validate the signal in terms of theories produced by physicists here on Earth, it is a perfect example of breadth of activity physicists are engaged in, attempting to answer the big questions such as the nature of dark matter, through our research.

Kind regards to Piotr Oleśkiewicz (Durham University) for bringing this topic to my attention and for his insights on cosmology, and to Luke Batten (University College London) for a few corrections.

*The oft-quoted fact about neutrinos is that 65 billion solar neutrinos pass through just one square centimetre of area on earth every single second. The vast majority of these neutrinos will whizz straight through you without ever having noticed you were there, but by chance, in your entire lifetime, it’s likely that at least one or two will have the courtesy to notice you and bump off one of your atoms. The other interesting fact is that due to the decay of potassium in your bones, you actually emit about three hundred neutrinos a second.

Share

Dark matter and dark energy feature prominently at the European Physics Society conference on particle physics in Vienna. Although physicists now understand pretty well the basic constituents of matter, all what one sees on Earth, in stars and galaxies, this huge amount of matter only accounts for 5% of the whole content of the Universe. Not surprising then that much efforts are deployed to elucidate the nature of dark matter (27% of the Universe), and dark energy (68%).

Since the Big Bang, the Universe is not only expanding, but this expansion is also accelerating. So which energy fuels this acceleration? We call it dark energy. This is still something absolutely unknown but the Dark Energy Survey (DES) team is determined to get some answers. To do so, they are searching a quarter of the southern sky, mapping the location, shape and distribution of various astronomical objects such as galactic clusters (large groups of galaxies) and supernovae (exploding stars). Their goal is to record information on 300 million galaxies and 2500 supernovae.

Galaxies formed thanks to gravity that allowed matter to cluster. But this happened against the dispersive effect of dark energy, since the expansion of the Universe scattered matter away. The DES scientists essentially study how large structures such as galactic clusters evolved in time by looking at objects at various distances, and whose light comes from different times in the past. With more data, they hope to better understand the dynamic of expansion.

Dark matter is just as unknown. So far, it has only manifested itself through gravitational effects. We can “feel” its presence but we cannot see it, since it emits no light, unlike regular matter found in stars and supernovae. As if the whole Universe was full of ghosts. A dozen detectors, using different techniques, are trying to find dark matter particles.

Not easy to catch such elusive particles when no one knows how and if these particles interact with matter. Moreover, these particles must interact very rarely with regular matter (otherwise, they would already have been found), the name of the game is to use massive detectors, in the hope one nucleus from one of the detector atoms will recoil when hit by a dark matter particle, inducing a small but detectable vibration in the detector. The experiments search for a range of possibilities, depending on the mass of the dark matter particles and how often they can interact with matter.

The plot below shows how often dark matter particles could interact with a nucleus (vertical axis) as a function of their mass (horizontal axis). This spans a wide region of possibilities one must test. The various curves indicate what has been achieved so far by different experiments. All possibilites above the curves are excluded. The left part of the plot is harder to probe since the lighter the dark matter particles is, the smaller the vibration induced.

CRESST-limitThe CRESST Collaboration uses small crystals operating at extremely low temperature. They are sensitive to the temperature rise that would occur if a dark matter particle deposited the smallest amount of energy. This allowed them to succeed where tens of previous experiments had failed: looking for very light particles. This is shown on the plot by the solid red curve in the upper left corner. All possibilities above are now excluded. So far, this area was only accessible to the Large Hadron Collider (LHC) experiments (results not shown here) but only when making various theoretical hypotheses. CRESST has just opened a new world of possibilities and they will sweep nearly the entire area in the coming years. Light dark matter particles better watch out.

Pauline Gagnon

To be alerted of new postings, follow me on Twitter: @GagnonPauline  or sign-up on this mailing list to receive an e-mail notification. You can also visit my website.

Share
The Milky Way rises over the Cerro Tololo Inter-American Observatory in northern Chile. The Dark Energy Survey operates from the largest telescope at the observatory, the 4-meter Victor M. Blanco Telescope (left). Photo courtesy of Andreas Papadopoulos

The Milky Way rises over the Cerro Tololo Inter-American Observatory in northern Chile. The Dark Energy Survey operates from the largest telescope at the observatory, the 4-meter Victor M. Blanco Telescope (left). Photo courtesy of Andreas Papadopoulos

For decades physicists have been convinced that most of our universe is invisible, but how do we know that if we can’t see it? I want to explain the thought process that leads one to believe in a theory via indirect evidence. For those who want to see a nice summary of the evidence, check this out. So this post isn’t 3000 words, I will simply say that either our theories of gravity are wrong, or the vast majority of the matter in our universe is invisible. That most of the matter in the universe is invisible, or “dark”, is actually well supported. Dark matter as a theory fits the data much better than modifications to gravity (with a couple of possible exceptions like mimetic dark matter). This isn’t necessarily surprising; frankly it would be a bit arrogant to assume that only matter similar to us exists. Particle physicists have known for a long time that not all particles are affected by all the fundamental forces. For example, the neutrino is invisible as it doesn’t interact with the electromagnetic force (or strong force, for that matter). So the neutrino is actually a form of dark matter, though it is much too quick and light to make up most of what we see.

The standard cosmological model, the ΛCDM model, has had tremendous success explaining the evolution of our universe. This is what most people refer to when they think of dark matter: the CDM stands for “cold dark matter”, and it is this consistency that allows us to explain observations from almost every cosmological epoch that is so compelling about dark matter. We see the effect of dark matter across the sky in the CMB, in the helium formed in primordial nucleosynthesis, in the very structure of the galaxies. We see dark matter a minute after the big bang, a million years, a billion years, and even today. Simply put, when you add in dark matter (and dark energy) almost the entirety of cosmological history makes sense.  While there some elements that seem to be lacking in the ΛCDM model (small scale structure formation, core vs cusp, etc), these are all relatively small details that seem to have solutions in either simulating normal matter more accurately, or small changes to the exact nature of dark matter.

Dark matter is essentially like a bank robber: the money is gone, but no-one saw the theft. Not knowing exactly who stole the money doesn’t mean that someone isn’t living it up in the Bahamas right now. The ΛCDM model doesn’t really care about the fine details of dark matter: things like its mass, exact interactions and formation are mostly irrelevant. To the astrophysicist, there are really two features that they require: dark matter cannot have strong interactions with normal matter (electromagnetic or strong forces), and dark matter must be moving relatively slowly (or “cold”). Anything that has these properties is called a dark matter “candidate” as it could potentially be the main constituent of dark matter. Particle physicists try to come up with these candidates, and hopefully find ways to test them. Ruling out a candidate is not the same as ruling out the idea of dark matter itself, it is just removing one of a hundred suspects.

Being hard to find is a crucial property of dark matter. We know dark matter must be a slippery bastard, as it doesn’t interact via the electromagnetic or strong forces. In one sense, assuming we can discover dark matter in our lifetime is presumptuous: we are assuming that it has interactions beyond gravity. This is one of a cosmologist’s fondest hopes as without additional interactions we are screwed. This is because gravity is by far the weakest force. You can test this yourself – go to the fridge, and get a magnet. With a simple fridge magnet, weighing only a few grams, you can pick up a paperclip, overpowering the 6*10^24 kg of gravitational mass the earth possesses. Trying to get a single particle, weighing about the same as an atom, to show an appreciable effect only through gravity is ludicrous. That being said, the vast quantities of dark matter strewn throughout our universe have had a huge and very detectable gravitational impact. This gravitational impact has led to very successful and accurate predictions. As there are so many possibilities for dark matter, we try to focus on the theories that link into other unsolved problems in physics to kill two birds with one stone. While this would be great, and is well motivated, nature doesn’t have to take pity on us.

So what do we look for in indirect evidence? Essentially, you want an observation that is predicted by your theory, but is very hard to explain without it. If you see an elephant shaped hole in your wall, and elephant shaped foot prints leading outside, and all your peanuts gone, you are pretty well justified in thinking that an elephant ate your peanuts. A great example of this is the acoustic oscillations in the CMB. These are huge sound waves, the echo of theCMB big bang in the primordial plasma. The exact frequency of this is related to the amount of matter in the universe, and how this matter interacts. Dark matter makes very specific predictions about these frequencies, which have been confirmed by measurements of the CMB. This is a key observation that modified gravity theories tend to have trouble explaining.

The combination of the strong indirect evidence for dark matter, the relative simplicity of the theory and the lack of serious alternatives means that research into dark matter theories is the most logical path. That is not to say that alternatives should not be looked into, but to disregard the successes of dark matter is simply foolish. Any alternative must match the predictive power and observational success of dark matter, and preferably have a compelling reason for being ‘simpler’ or philosophically nicer then dark matter. While I spoke about dark matter, this is actually something that occurs all the time in science: natural selection, atomic theory and the quark model are all theories that have all been in the same position at one time or another. A direct discovery of dark matter would be fantastic, but is not necessary to form a serious scientific consensus. Dark matter is certainly mysterious, but ultimately not a particularly strange idea.

Disclaimer: In writing this for a general audience, of course I have to make sacrifices. Technical details like the model dependent nature of cosmological observations are important, but really require an entire blog post to themselves to answer fully.

 

 

Share

This Fermilab press release came out on April 13, 2015.

This is the first Dark Energy Survey map to trace the detailed distribution of dark matter across a large area of sky. The color scale represents projected mass density: red and yellow represent regions with more dense matter. The dark matter maps reflect the current picture of mass distribution in the universe where large filaments of matter align with galaxies and clusters of galaxies. Clusters of galaxies are represented by gray dots on the map - bigger dots represent larger clusters. This map covers three percent of the area of sky that DES will eventually document over its five-year mission. Image: Dark Energy Survey

This is the first Dark Energy Survey map to trace the detailed distribution of dark matter across a large area of sky. The color scale represents projected mass density: red and yellow represent regions with more dense matter. The dark matter maps reflect the current picture of mass distribution in the universe where large filaments of matter align with galaxies and clusters of galaxies. Clusters of galaxies are represented by gray dots on the map – bigger dots represent larger clusters. This map covers three percent of the area of sky that DES will eventually document over its five-year mission. Image: Dark Energy Survey

Scientists on the Dark Energy Survey have released the first in a series of dark matter maps of the cosmos. These maps, created with one of the world’s most powerful digital cameras, are the largest contiguous maps created at this level of detail and will improve our understanding of dark matter’s role in the formation of galaxies. Analysis of the clumpiness of the dark matter in the maps will also allow scientists to probe the nature of the mysterious dark energy, believed to be causing the expansion of the universe to speed up.

The new maps were released today at the April meeting of the American Physical Society in Baltimore, Maryland. They were created using data captured by the Dark Energy Camera, a 570-megapixel imaging device that is the primary instrument for the Dark Energy Survey (DES).

Dark matter, the mysterious substance that makes up roughly a quarter of the universe, is invisible to even the most sensitive astronomical instruments because it does not emit or block light. But its effects can be seen by studying a phenomenon called gravitational lensing – the distortion that occurs when the gravitational pull of dark matter bends light around distant galaxies. Understanding the role of dark matter is part of the research program to quantify the role of dark energy, which is the ultimate goal of the survey.

This analysis was led by Vinu Vikram of Argonne National Laboratory (then at the University of Pennsylvania) and Chihway Chang of ETH Zurich. Vikram, Chang and their collaborators at Penn, ETH Zurich, the University of Portsmouth, the University of Manchester and other DES institutions worked for more than a year to carefully validate the lensing maps.

“We measured the barely perceptible distortions in the shapes of about 2 million galaxies to construct these new maps,” Vikram said. “They are a testament not only to the sensitivity of the Dark Energy Camera, but also to the rigorous work by our lensing team to understand its sensitivity so well that we can get exacting results from it.”

The camera was constructed and tested at the U.S. Department of Energy’s Fermi National Accelerator Laboratory and is now mounted on the 4-meter Victor M. Blanco telescope at the National Optical Astronomy Observatory’s Cerro Tololo Inter-American Observatory in Chile. The data were processed at the National Center for Supercomputing Applications at the University of Illinois in Urbana-Champaign.

The dark matter map released today makes use of early DES observations and covers only about three percent of the area of sky DES will document over its five-year mission. The survey has just completed its second year. As scientists expand their search, they will be able to better test current cosmological theories by comparing the amounts of dark and visible matter.

Those theories suggest that, since there is much more dark matter in the universe than visible matter, galaxies will form where large concentrations of dark matter (and hence stronger gravity) are present. So far, the DES analysis backs this up: The maps show large filaments of matter along which visible galaxies and galaxy clusters lie and cosmic voids where very few galaxies reside. Follow-up studies of some of the enormous filaments and voids, and the enormous volume of data, collected throughout the survey will reveal more about this interplay of mass and light.

“Our analysis so far is in line with what the current picture of the universe predicts,” Chang said. “Zooming into the maps, we have measured how dark matter envelops galaxies of different types and how together they evolve over cosmic time. We are eager to use the new data coming in to make much stricter tests of theoretical models.”

View the Dark Energy Survey analysis.

The Dark Energy Survey is a collaboration of more than 300 scientists from 25 institutions in six countries. Its primary instrument, the Dark Energy Camera, is mounted on the 4-meter Blanco telescope at the National Optical Astronomy Observatory’s Cerro Tololo Inter-American Observatory in Chile, and its data is processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

Funding for the DES Projects has been provided by the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, ETH Zurich for Switzerland, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência e Tecnologia, the Deutsche Forschungsgemeinschaft and the collaborating institutions in the Dark Energy Survey. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @Fermilab.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Share

The Black Hills of South Dakota may seem an unlikely location to hunt for dark matter, even if the name does seem fitting. If they are known for one thing, it’s gold – and gold requires a mine. Gold mining means deep underground caverns, which just happen to be the perfect home for low background experiments such as dark matter searches thanks to the cosmic ray shielding properties of thousands of feet of rock.

I am currently in Lead, S.D. working underground on LUX, the Large Underground Xenon detector. LUX sits in the Davis campus of SURF – the Sanford Underground Research Facility, an underground lab built in the Homestake gold mine. The Davis campus is named after Ray Davis, whose famous Homestake neutrino experiment was the first to detect neutrinos from the sun. LUX now sits in the same cavern that once housed his ground-breaking experiment.

To cut a long story short, LUX is a big tank of xenon that produces light when particles pass through it. We collect that light with sensors called photomultiplier tubes and search through the data for possible dark matter signals. In particular, we look for WIMPs – Weakly Interacting Massive Particles, the most promising dark matter candidate. Placing LUX deep underground in a mine cuts away lots of background from particles streaming down from space and the atmosphere, as those particles are absorbed by the rock. (For a bit of a more technical insight, I recommend this article, which was written during my shifts last year.)

But what do we, the physicists, actually do out here? Our detector is currently in WIMP search mode, waiting patiently for any sign of dark matter, but it needs a bit of a (human) hand. To give you an insight, here is a typical day in Lead, SD:

5.15am – I wake up. Getting up this early is a little unnecessary, but I like to have some time to wake up in the morning! I have a chat with my boyfriend back in London and spend some time reading my emails as I am 7 hours behind the UK over here.

7.00am – We leave to drive up to the mine. Lead is a tiny town and it only takes a few minutes. The streets look like they are straight out of a cowboy film!

Beautiful morning view from outside SURF. There are two shafts, we use the Yates. The Ross shaft is visible centre-right.

Beautiful morning view from outside SURF. There are two shafts, we use the Yates. The Ross shaft is visible centre-right.

7.15am – We arrive at SURF. We’re always a bit rushed; we grab our head torches and head to the changing area. Overalls, steel capped dirty boots, helmets, safety glasses, self-rescuers and the head torch all have to be donned. It’s unpleasantly hot, as the water running down the lift shaft must not be allowed to freeze. We take two golden tags with our name on and place one on a board to show we have gone underground, the other stays on your person (to identify your body…? Doesn’t bear thinking about!).

Me in my fashionable mining gear, 4850 feet underground at SURF

Me in my fashionable mining gear, 4850 feet underground at SURF

7.30am – The cage (literally a big metal cage that acts as our ride downwards) departs from ground level. The cage operators have impeccable timing and take care of opening and closing the door and contacting the hoist operator, who will lower us down from the surface. Usually the morning cage isn’t too busy (there is an earlier one at 7am) but it’s still not the most pleasant experience. Sometimes we are all a little too close for comfort – miners don’t tend to be small guys! Also, if you stand in the wrong place you get cold water dripping on you for the whole journey.

7.45am – The cage arrives at the 4850 level – 4850 feet underground. We leave the cage and head to the bootwash. LUX and the other main experiment at SURF, Majorana, both need clean conditions as they are low background experiments. Any dirt treaded in to the lab could contain radioactive elements that would be very bad for our detectors. For Majorana, the need for cleanliness is much higher than LUX, and so they have a cleanroom that requires them to wear special body suits, face masks and hair nets. I am extremely glad that isn’t necessary for LUX! After cleaning our boots, we remove all of our gear except for the glasses, change into clean steel-capped boots (I obviously have pink ones!) and new hard hats.

8.00am – Morning meeting. We all gather in the LUX control room and discuss the plan for the day. This can vary wildly depending on the decisions made in the weekly planning meeting. We may have taken data or seen conditions that suggest something needs investigating or fixing, or it might just be boring old WIMP search mode where nothing special needs to be done. The control room is the only place where we can remove our hard hats and safety glasses – stopping people leaving the room without them has to be done regularly!

12.00pm – We tend to take a break for lunch. Throughout the morning, everyone will have been going about their various shifting duties – monitoring all aspects of the detector, sampling xenon to check its purity, injecting krypton for calibration, refilling the liquid nitrogen store etc. We may have received some training from off-site system experts or attended a meeting, depending on what day it is. Conditions underground are pretty good, you start to forget where you are – only the lack of windows and bumpy walls remind you! During my previous visit 10 months ago we still had incinerator toilets – the less said about these, the better! They often broke down after the lunchtime rush and if you needed the toilet you had to put all your dirty mining gear back on and go to use the chemical toilets out in the mine. Now, thank god, we actually have running water!

View from the lower Davis. The water tank containing LUX is visible in the centre.

View from the lower Davis. The water tank containing LUX is visible in the centre.

4.00pm –If we are lucky, we get the cage up at 4. If something has gone wrong or there is enough to be done we may have to stay till the next cage at 4.45pm or even the latest at 5.30pm. In an emergency we may be able to come up later but we prefer to not have to do that! So it’s back to being squished in a damp dark cage full of South Dakotan miners!

6.00pm – dinnertime! Often someone will cook a group meal or we will head out to get food either in Lead, Deadwood or Spearfish. If it’s Friday, we go to Lewie’s for greasy burgers to do the “pub quiz” (I have been attempting to teach my American colleagues some proper English) . We tend to do very well in the trivia sections of the quiz, but the music round is our weakness. There’s too much country for us outsiders. The quiz host pulls several names out of a hat for prizes each week; so far on this trip I’ve won an extra large bud-light t-shirt (bear in mind I wear XS…) and some hot wings, which as a vegetarian I couldn’t eat!

8.00pm – depending on the person / how much work they have to do, some of us may continue to work. I mainly do analysis work and sometimes find I don’t have much time to get it done during the underground day so sometimes I try to get a bit done at night. I am also currently the shift manager so I have to fill in a shift report detailing what we have done each day.

10.00pm – bedtime. I’m wiped out by this stage and fall straight asleep, usually dreaming about LUX.

Devil's Tower

Devil’s Tower, Wyoming

But it’s not all hard work. Every other weekend we get 4 non-underground days, which gives us a little time to see the sights of South Dakota (or, if gambling is your thing, there are plenty of casinos in Deadwood)! On my last visit, I visited Mount Rushmore (smaller than you’d think) and Crazy Horse (much bigger than you’d think!), the latter being an enormous mountain carving that has been in progress for over 50 years – still, only his face is complete. If we go somewhere far, someone always has to stay close to SURF in case of an emergency – our detector might need us! This weekend we headed over to the neighbouring state of Wyoming to see Devil’s Tower; an ethereal protrusion of volcanic rock 1,267 feet above the surrounding ground! It was an incredible sight, although temperatures had dropped and I spent most of the time there jumping around trying to restore circulation to my hands. I have Raynaud’s syndrome, which means the moment I get slightly cold my fingers turn white and become extremely painful! We actually had -19 C (-2F) here in Lead a couple of days ago – not fun! Luckily, it’s warm underground!

Speaking of the weather, this time of year there’s snow, so much snow! It’s crazy to think how Britain comes to a standstill with schools and businesses closing when we get a tiny smearing of snow, whilst here several feet overnight is not uncommon. But life goes on in Lead, and we usually still make it up the hill to the mine!

The LUX collaboration. This is standard Lead weather!

The LUX collaboration, demonstrating a standard Lead winter! There seems to be a hairy impostor in this photo…

Lead is a place very different to London –  everyone is so friendly and pleasant! There’s no avoiding all human interaction like on the tube in London – everyone says hello! It is difficult eating as a vegetarian here, but most places have been accommodating and have allowed me to order special things (e.g. a salmon salad with no salmon, a Reuben with no beef!). The locals are always interested to hear how things are going at SURF. Amusingly, one resident excitedly asked “You’re from Pizza Lab?” after they heard us discussing the lab! One big shock to me, however, was finding out about the gun laws here in S.D. – concealed carry permits can be issued and apparently most people you see will be carrying a gun (maybe an exaggeration? But maybe not, you just can’t tell!). But then again all the gun laws in America seem alien to us Brits!

The staff at SURF are also extremely accommodating, helping us get underground in emergencies, and their health and safety policies are commendable. Right now, most shifters are getting trained as “guides” – each research team has a guide who is responsible for getting you to safety, whether that is above ground or in the refuge chamber.

The refuge chamber is something we all hope to never have to use. In the event that we cannot reach the ground from either of the two mine shafts, and that the rest of the mine is dangerous to inhabit (for example a fire causing a lack of oxygen), this is where we would go. It has carbon dioxide scrubbers, oxygen, water and a huge supply of “nutrition bars’ – rock hard bars containing a whopping 500 calories each so that someone could easily survive on two to four a day. There is enough oxygen for the entire underground population to survive for many days, awaiting rescue – but it’s not something we like to think about happening – especially since the toilets are just buckets!

As much as I prefer to be safely in front of my laptop, with no million dollar detectors in my hands and not facing the risks of working underground (note to self, do NOT go back on the Wikipedia list of mining accidents!), I do enjoy being on-site. It makes me feel like I’m actually part of something. We are the “underground crew”, a team of physicists travelling 4850 feet below Earth’s surface every day to take care of our precious detector. We keep things running smoothly, allowing LUX and our colleagues off-site to keep on searching for dark matter! Who knows, the Black Hills may yet bear some dark matter fruit!

Share

Hanging around a pool table might seem like an odd place to learn physics, but a couple of hours on our department’s slanted table could teach you a few things about asymmetry. The third time a pool ball flew off the table and hit the far wall I knew something was broken. The pool table’s refusal to obey the laws of physics gives aspiring physicists a healthy distrust of the simplified mechanics they learnt in undergrad. Whether in explaining why pool balls bounce sideways off lumpy cushions or why galaxies exist, asymmetries are vital to understanding the world around us. Looking at dark matter theories that interact asymmetrically with visible matter can give us new clues as to why matter exists.

Alternatives to the classic WIMP (weakly interacting massive particles) dark matter scenario are becoming increasingly important. Natural supersymmetry is looking less and less likely, and could be ruled out in 2015 by the Large Hadron Collider. Asymmetric dark matter theories provide new avenues to search for dark matter and help explain where the material in our universe comes from -baryogenesis. Baryogenesis is in some ways a more important cosmological problem than dark matter. The Standard Model of particle physics describes all the matter that you are familiar with, from trees to stars, but fails to explain how this matter came to be. In fact, the Standard Model predicts a sparsely populated universe, where most of the matter and antimatter has long since annihilated each another. In particle colliders, whenever a particle of matter is created, an opposing particle of antimatter is also created. Antimatter is matter with all its charges reversed, like a photo negative. While it is often said that opposites attract, in the particle physics world opposites annihilate. But when we look at the universe around us, all we see is matter. There are no antistars and antiplanets, no antihumans living on some distant world. So if matter and antimatter are always created together, how did this happen? If there were equal amounts of matter and antimatter, each would annihilate the other in the first fractions of a second and our universe would be stillborn. The creation of this asymmetry between matter and antimatter is known as baryogenesis, and is one of the strongest cosmological confirmations of physics beyond the Standard Model. The exact amount of asymmetry determines how much matter, and consequently how many stars and galaxies, exists now.

And what about the other 85% of matter in the universe? This dark matter has only shown itself through gravitational interactions, but it has shaped the evolution of the universe. Dark matter keeps galaxies from tearing themselves apart, and outnumbers visible matter five to one. Five to one is a curious ratio. If dark and visible matter were entirely different substances with a completely independent history, you would not expect almost the same amount of dark and normal matter. This is like counting the number of trees in the world and finding that it’s the same as the number of pebbles. While we know that dark and visible matter are not the same substance (the Standard Model does not include any dark matter candidates), this similarity cannot be ignored. The similarity in abundances between dark and visible matter implies that they were caused by the same mechanism, created in the same way. As the abundance of matter is determined by the asymmetry between antimatter and matter, this leads us to a relationship between baryogenesis and dark matter.

Asymmetric dark matter theories have attracted significant attention in the last few years, and are now studied by physicists across the world. This has give us a cornucopia of asymmetric dark matter theories. Despite this, there are several common threads and predictions that allow us to test many of them at once. In asymmetric dark matter theories baryogenesis is caused by interactions between dark and normal matter. By having dark matter interact differently with matter and antimatter, we can get marginally more matter in the universe then antimatter. After the matter and antimatter annihilate each other, there is some minuscule amount of matter left standing. These leftovers go on to become the universe you know. Typically, a similar asymmetry in dark matter and its antiparticle is also made, so there is a similar amount of dark matter left over as well. This promotes dark matter from being a necessary, yet boring spectator in the cosmic tango to an active participant, saving our universe from desolation. Asymmetric dark matter also provides new ways to search for dark matter, such as neutrinos generated from dark matter in the sun. As asymmetric dark matter interacts with normal matter, large bodies like the sun and the earth can capture a reservoir of dark matter, sitting at their core. This can generate ghostlike neutrinos, or provide an obstacle for dark matter in direct detection experiments. Asymmetric dark matter theories can also tell us where we do not expect to see dark matter. A large effort has been made to see tell-tale signs of dark matter annihilating with its antiparticle throughout the universe, but it is yet to meet with success. While experiments like the Fermi space telescope have found potential signals (such as a 130 GeV line in 2012), these signals are ambiguous or fail to survive the test of time. The majority of asymmetric dark matter theories predict that there is no signal, as all the anti dark matter has long since been destroyed.

As on the pool table, even little asymmetries can have a profound effect on what we see. While much progress is made from finding new symmetries, we can’t forget the importance of imperfections in science. Asymmetric dark matter can explain where the matter in our universe came from, and gives dark and normal matter a common origin. Dark matter is no longer a passive observer in the evolution of our universe; it plays a pivotal role in the world around us.

Share

Physics Laboratory: Back to Basics

Friday, October 10th, 2014

Dark matter –  it’s essential to our universe, it’s mysterious and it brings to mind cool things like space, stars, and galaxies. I have been fascinated by it since I was a child, and I feel very lucky to be a part for the search for it. But that’s not actually what I’m going to be talking about today.

I am a graduate student just starting my second year in the High Energy Physics group at UCL, London. Ironically, as a dark matter physicist working in the LUX (Large Underground Xenon detector) and LZ (LUX-ZEPLIN) collaborations, I’m actually dealing with very low energy physics.
When people ask what I do, I find myself saying different things, to differing responses:

  1. “I’m doing a PhD in physics” – reaction: person slowly backs away
  2. “I’m doing a PhD in particle physics” – reaction: some interest, mention of the LHC, person mildly impressed
  3. “I’m doing a PhD in astro-particle physics” – reaction: mild confusion but still interested, probably still mention the Large Hadron Collider
  4. “I’m looking for dark matter!” – reaction: awe, excitement, lots of questions

This obviously isn’t true in all cases, but has been the general pattern assumed. Admittedly, I enjoy that people are impressed, but sometimes I struggle to find a way to explain to people not in physics what I actually do day to day. Often I just say, “it’s a lot of computer programming; I analyse data from a detector to help towards finding a dark matter signal”, but that still induces a panicked look in a lot of people.

Nevertheless, I actually came across a group of people who didn’t ask anything about what I actually do last week, and I found myself going right back to basics in terms of the physics I think about daily. Term has just started, and that means one thing: undergraduates. The frequent noise they make as they stampede past my office going the wrong way to labs makes me wonder if the main reason for sending them away for so long is to give the researchers the chance to do their work in peace.

Nonetheless, somehow I found myself in the undergraduate lab on Friday. I had to ask myself why on earth I had chosen to demonstrate – I am, almost by definition, terrible in a lab. I am clumsy and awkward, and even the most simple equipment feels unwieldy in my hands. During my own undergrad, my overall practical mark always brought my average mark down for the year. My masters project was, thank god, entirely computational. But thanks to a moment of madness (and the prospect of earning a little cash, as London living on a PhD stipend is hard), I have signed up to be a lab demonstrator for the new first year physicists.

Things started off awkwardly as I was told to brief them on the experiment and realised I had not a great deal to say.  I got more into the swing of things as time went by, but I still felt like I’d been thrown in the deep end. I told the students I was a second year PhD student; one of them got the wrong end of the stick and asked if I knew a student who was a second year undergrad here. I told him I was postgraduate and he looked quite embarrassed, whilst I couldn’t help but laugh at the thought of the chaos that would ensue if a second year demonstrated the first year labs.

oscilloscope

The oscilloscope: the nemesis of physics undergrads in labs everywhere

None of them asked what my PhD was in. They weren’t interested – somehow I had become a faceless authority who told them what to do and had no other purpose. I am not surprised – they are brand new to university, and more importantly, they were pretty distracted by the new experience of the laboratory. That’s not to say they particularly enjoyed it, they seemed to have very little enthusiasm for the experiment. It was a very simple task: measuring the speed of sound in air using a frequency generator, an oscillator and a ruler. For someone now accustomed to dealing with data from a high tech dark matter detector, it was bizarre! I do find the more advanced physics I learn, the worse I become at the basics, and I had to go aside for a moment with a pen and paper to reconcile the theory in my head – it was embarrassing, to say the least!

Their frustration at the task was evident – there were frequent complaints over the length of time they were writing for, over the experimental ‘aims’ and ‘objectives’, of the fact they needed to introduce their diagrams before drawing them, etc. Eyes were rolling at me. I was going to have to really try to drill it in that this was indeed an important exercise. The panic I could sense from them was a horrible reminder of how I used to feel in my own labs. It’s hard to understand at that point that this isn’t just some form of torture, you are actually learning some very valuable and transferrable skills about how to conduct a real experiment. Some examples:

  1. Learn to write EVERYTHING down, you might end up in court over something and some tiny detail might save you.
  2. Get your errors right. You cannot claim a discovery without an uncertainty, that’s just physics. Its difficult to grasp, but you can never fully prove a hypothesis, only provide solid evidence towards it.
  3. Understand the health and safety risks – they seem pointless and stupid when the only real risk seems to be tripping over your bags, but speaking as someone who has worked down a mine with pressurised gases, high voltages and radioactive sources, they are extremely important and may be the difference between life and death.

In the end, I think my group did well. They got the right number for the speed of sound and their lab books weren’t a complete disaster. A few actually thanked me on their way out. 

It was a bit of a relief to get back to my laptop where I actually feel like I know what I am doing, but the experience was a stark reminder of where I was 5 years ago and how much I have learned. Choosing physics for university means you will have to struggle to understand things, work hard and exhaust yourself, but in all honestly it was completely worth it, at least for me. Measuring the speed of sound in air is just the beginning. One day, some of those students might be measuring the quarks inside a proton, or a distant black hole, or the quantum mechanical properties of a semiconductor. 

I’m back in the labs this afternoon, and I am actually quite looking forward to seeing how they cope this week, when we study that essential pillar of physics, conservation of momentum. I just hope they don’t start throwing steel ball-bearings at each other. Wish me luck.

Share

This article appeared in symmetry on July 11, 2014.

Together, the three experiments will search for a variety of types of dark matter particles. Photo: NASA

Together, the three experiments will search for a variety of types of dark matter particles. Photo: NASA

Two US federal funding agencies announced today which experiments they will support in the next generation of the search for dark matter.

The Department of Energy and National Science Foundation will back the Super Cryogenic Dark Matter Search-SNOLAB, or SuperCDMS; the LUX-Zeplin experiment, or LZ; and the next iteration of the Axion Dark Matter eXperiment, ADMX-Gen2.

“We wanted to pool limited resources to put together the most optimal unified national dark matter program we could create,” says Michael Salamon, who manages DOE’s dark matter program.

Second-generation dark matter experiments are defined as experiments that will be at least 10 times as sensitive as the current crop of dark matter detectors.

Program directors from the two federal funding agencies decided which experiments to pursue based on the advice of a panel of outside experts. Both agencies have committed to working to develop the new projects as expeditiously as possible, says Jim Whitmore, program director for particle astrophysics in the division of physics at NSF.

Physicists have seen plenty of evidence of the existence of dark matter through its strong gravitational influence, but they do not know what it looks like as individual particles. That’s why the funding agencies put together a varied particle-hunting team.

Both LZ and SuperCDMS will look for a type of dark matter particles called WIMPs, or weakly interacting massive particles. ADMX-Gen2 will search for a different kind of dark matter particles called axions.

LZ is capable of identifying WIMPs with a wide range of masses, including those much heavier than any particle the Large Hadron Collider at CERN could produce. SuperCDMS will specialize in looking for light WIMPs with masses lower than 10 GeV. (And of course both LZ and SuperCDMS are willing to stretch their boundaries a bit if called upon to double-check one another’s results.)

If a WIMP hits the LZ detector, a high-tech barrel of liquid xenon, it will produce quanta of light, called photons. If a WIMP hits the SuperCDMS detector, a collection of hockey-puck-sized integrated circuits made with silicon or germanium, it will produce quanta of sound, called phonons.

“But if you detect just one kind of signal, light or sound, you can be fooled,” says LZ spokesperson Harry Nelson of the University of California, Santa Barbara. “A number of things can fake it.”

SuperCDMS and LZ will be located underground—SuperCDMS at SNOLAB in Ontario, Canada, and LZ at the Sanford Underground Research Facility in South Dakota—to shield the detectors from some of the most common fakers: cosmic rays. But they will still need to deal with natural radiation from the decay of uranium and thorium in the rock around them: “One member of the decay chain, lead-210, has a half-life of 22 years,” says SuperCDMS spokesperson Blas Cabrera of Stanford University. “It’s a little hard to wait that one out.”

To combat this, both experiments collect a second signal, in addition to light or sound—charge. The ratio of the two signals lets them know whether the light or sound came from a dark matter particle or something else.

SuperCDMS will be especially skilled at this kind of differentiation, which is why the experiment should excel at searching for hard-to-hear low-mass particles.

LZ’s strength, on the other hand, stems from its size.

Dark matter particles are constantly flowing through the Earth, so their interaction points in a dark matter detector should be distributed evenly throughout. Quanta of radiation, however, can be stopped by much less significant barriers—alpha particles by a piece of paper, beta particles by a sandwich. Even gamma ray particles, which are harder to stop, cannot reach the center of LZ’s 7-ton detector. When a particle with the right characteristics interacts in the center of LZ, scientists will know to get excited.

The ADMX detector, on the other hand, approaches the dark matter search with a more delicate touch. The dark matter axions ADMX scientists are looking for are too light for even SuperCDMS to find.

If an axion passed through a magnetic field, it could convert into a photon. The ADMX team encourages this subtle transformation by placing their detector within a strong magnetic field, and then tries to detect the change.

“It’s a lot like an AM radio,” says ADMX-Gen2 co-spokesperson Gray Rybka of the University of Washington in Seattle.

The experiment slowly turns the dial, tuning itself to watch for one axion mass at a time. Its main background noise is heat.

“The more noise there is, the harder it is to hear and the slower you have to tune,” Rybka says.

In its current iteration, it would take around 100 years for the experiment to get through all of the possible channels. But with the addition of a super-cooling refrigerator, ADMX-Gen2 will be able to search all of its current channels, plus many more, in the span of just three years.

With SuperCDMS, LZ and ADMX-Gen2 in the works, the next several years of the dark matter search could be some of its most interesting.

Kathryn Jepsen

Share

This article appeared in symmetry on February 28, 2014.

The Cryogenic Dark Matter Search has set more stringent limits on light dark matter.

The Cryogenic Dark Matter Search has set more stringent limits on light dark matter.

Scientists looking for dark matter face a serious challenge: No one knows what dark matter particles look like. So their search covers a wide range of possible traits—different masses, different probabilities of interacting with regular matter.

Today, scientists on the Cryogenic Dark Matter Search experiment, or CDMS, announced they have shifted the border of this search down to a dark-matter particle mass and rate of interaction that has never been probed.

“We’re pushing CDMS to as low mass as we can,” says Fermilab physicist Dan Bauer, the project manager for CDMS. “We’re proving the particle detector technology here.”

Their result, which does not claim any hints of dark matter particles, contradicts a result announced in January by another dark matter experiment, CoGeNT, which uses particle detectors made of germanium, the same material as used by CDMS.

To search for dark matter, CDMS scientists cool their detectors to very low temperatures in order to detect the very small energies deposited by the collisions of dark matter particles with the germanium. They operate their detectors half of a mile underground in a former iron ore mine in northern Minnesota. The mine provides shielding from cosmic rays that could clutter the detector as it waits for passing dark matter particles.

Today’s result carves out interesting new dark matter territory for masses below 6 billion electronvolts. The dark matter experiment Large Underground Xenon, or LUX, recently ruled out a wide range of masses and interaction rates above that with the announcement of its first result in October 2013.

Scientists have expressed an increasing amount of interest of late in the search for low-mass dark matter particles, with CDMS and three other experiments—DAMA, CoGeNT and CRESST—all finding their data compatible with the existence of dark matter particles between 5 billion and 20 billion electronvolts. But such light dark-matter particles are hard to pin down. The lower the mass of the dark-matter particles, the less energy they leave in detectors, and the more likely it is that background noise will drown out any signals.

Even more confounding is the fact that scientists don’t know whether dark matter particles interact in the same way in detectors built with different materials. In addition to germanium, scientists use argon, xenon, silicon and other materials to search for dark matter in more than a dozen experiments around the world.

“It’s important to look in as many materials as possible to try to understand whether dark matter interacts in this more complicated way,” says Adam Anderson, a graduate student at MIT who worked on the latest CDMS analysis as part of his thesis. “Some materials might have very weak interactions. If you only picked one, you might miss it.”

Scientists around the world seem to be taking that advice, building different types of detectors and constantly improving their methods.

“Progress is extremely fast,” Anderson says. “The sensitivity of these experiments is increasing by an order of magnitude every few years.”

Kathryn Jepsen

Share