• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USA

Latest Posts

Posts Tagged ‘japan’

The ILC site has been chosen. What does this mean for Japan?

Credit: linearcollider.org

The two ILC candidate sites: Sefuri in the South and Kitakami in the North. Credit: linearcollider.org

Hi Folks,

It is official [Japanese1,Japanese2]: the Linear Collider Collaboration and the Japanese physics community have selected the Kitakami mountain range in northern Japan as the site for the proposed International Linear Collider. Kitakami is a located in the Iwate Prefecture and is just north of the Miyagi prefecture, the epicenter of the 2011 Tohoku Earthquake. Having visited the site in June, I cannot aptly express how gorgeous the area is, but more importantly, how well-prepared Iwate City is for this responsibility.

Science is cumulative: new discoveries are used to make more discoveries about how nature works, and physics is no different. The discovery of the Higgs boson at the Large Hadron Collider was a momentous event. With its discovery, physicists proved how some particles have mass and why others have no mass at all. The Higgs boson plays a special role in this process, and after finally finding it, we are determined to learn more about the Higgs. The International Linear Collider (ILC) is a proposed Higgs boson factory that would allow us to intimately understand the Higgs. Spanning 19 miles (31 km) [310 football pitches/soccer fields], if constructed, the ILC will smash together electrons and their antimatter partners, positrons, to produce a Higgs boson (along with a Z boson). In such a clean environment (compared to proton colliders), ultra-precise measurements of the Higgs boson’s properties can be made, and thereby elucidate the nature of this shiny new particle.

credit: li

The general overview schematic of the International Linear Collider. Credit: linearcollider.org

However, the ILC is more than just a experiment. Designing, constructing, and operating the machine for 20 years will be a huge undertaking with lasting effects. For staters, the collider’s Technical Design Report (TDR), which contains every imaginable detail minus the actual blueprints, estimates the cost of the new accelerator to be 7.8 billion USD (2012 dollars). This is not a bad thing. Supposing 50% of the support came from Asia, 25% from the Americas, and 25% from Europe, that would be nearly 2 billion USD invested in new radio frequency technology in England, Germany, and Italy. In the US, it would be nearly 2 billion USD invested in coastal and Midwestern laboratories developing new cryogenic and superconducting technology. In Asia, this would be nearly 4 billion USD invested in these technologies as well as pure labor and construction. Just as the LHC was a boon on the European economy, a Japanese-based ILC will be a boon for an economy temporarily devastated  by an historic earthquake and tsunami. These are just hypothetical numbers; the real economic impact will be  larger.

I had the opportunity to visit Kitakami this past June as a part of a Higgs workshop hosted by Tohoku University. Many things are worth noting. The first is just how gorgeous the site is. Despite its lush appearance, the site offers several geological advantages, including stability against earthquakes of any size. Despite its proximity to the 2011 earthquake and the subsequent tsunami, this area was naturally protected by the mountains. Below is a photo of the Kitakami mountains that I took while visiting the site. Interestingly, I took the photo from the UNESCO World Heritage site Hiraizumi. The ILC is designed to sit between the two mountains in the picture.


The Kitamaki Mountain Range as seen from the UNESCO World Heritage Site in Hiraizumi, Japan. Credit: Mine

What I want to point out in the picture below is the futuristic-looking set of tracks running across the photo. That is the rail line for the JR East bullet train, aka the Tohoku Shinkansen. In other words, the ILC site neighbours a very major transportation line connecting the Japanese capital Tokyo to the northern coast. It takes the train just over 2 hours to traverse the 250 miles (406.3 km) from Tokyo station to the Ichinoseki station in Iwate. The nearest major city is Sendai, capital of Miyagi, home to the renown Tohoku University, and is only a 10 minute shinkansen ride from Ichinoseki station.


The Kitamaki Mountain Range as seen from the UNESCO World Heritage Site in Hiraizumi, Japan. Credit: Mine

What surprised me is how excited the local community is about the collider. After exiting the Ichinoseki station I discovered this subtle sign of support:

There is much community support for the ILC: The Ichinoseki Shinkansen Station in Iwate Prefecture, Japan. Credit: Mine

The residents of Iwate and Miyagi, independent of any official lobbying organization, have formed their own “ILC Support Committee.” They even have their own facebook page. Over the past year, the residents have invited local university physicists to give public lectures on what the ILC is; they have requested that more English, Chinese, Korean, and Tagalog language classes be offered at local community centers; that more Japanese language classes for foreigners are offered in these same facilities; and have even discussed with city officials how to prepare Iwate for the prospect of a rapid increase in population over the next 20 years.

Despite all this, the real surprises were the pamphlets. Iwate has seriously thought this through.


Pamphlets showcasing the Kitakami Mountain Range in Iwate, Japan. Credit: Mine

The level of detail in the pamphlets is impressive. My favourite pamphlet has the phrase, “Ray of Hope: Tohoku Is Ready to Welcome the ILC” on the front cover. Inside is a list of ways to reach the ILC site and the time it takes. For example: it takes 12 hours 50 minutes to reach Tokyo from Rome and 9 hours 40 minutes from Sydney. The brochure elaborates that the Kitakami mountains maintain roughly the same temperature as Switzerland (except in August-September) but collects much more precipitation through the year. Considering that CERN is located in Geneva, Switzerland, and that many LHC experimentalists will likely become ILC experimentalists, the comparison is very helpful. The at-a-glance annual festival schedule is just icing on the cake.


“Ray of Hope” pamphlet describing how to each different ILC campuses by train.  Credit: Mine

Now that the ILC site has been selected, surveys of the land can be conducted so that blue prints and a finalized cost estimate can be established. From my discussions with people involved in the site selection process, the decision was very difficult. I have not visited the Fukuoka site, though I am told it is a comparably impressive location. It will be a while still before any decision to break ground is made. And until that happens, there is plenty of work to do.

Happy Colliding

– Richard (@bravelittlemuon)



Cette histoire, à cheval entre le LAL (Laboratoire de l’accélérateur linéaire) et l’IPNO (Institut de physique nucléaire d’Orsay), nous retrace le parcours admirable de cette physicienne qui œuvra avec force pour promouvoir les relations entre la France et le Japon.

En 1939, partir travailler à l’étranger était loin d’être évident pour un scientifique Japonais, d’autant plus si ce scientifique était une femme.         C’est pourtant ce que fit Toshiko Yuasa, que l’on connaît aussi comme la première physicienne Japonaise. C’est en France, au collège de France, sous la direction du professeur Frédéric Joliot-Curie, qu’elle commença ses recherches. Avec l’arrivée de la guerre, la physicienne dut quitter à regret la France, mais non sans se faire confier du matériel par ses collègues français, ce qui lui permit de poursuivre ses travaux. Une fois la guerre passée, c’est avec une certaine hâte qu’elle retourna en France, au CNRS, à l’IPNO, pour y mener 30 ans de carrière. Durant cette carrière et cette vie, elle œuvra remarquablement pour promouvoir les échanges culturels et scientifiques entre la France et le Japon.

Toshiko Yuasa sur le toit du Collège de France - 1941 - © Institut for Gender Studies, Ochanomizu University

Toshiko Yuasa sur le toit du Collège de France - 1941 - © Institut for Gender Studies, Ochanomizu University

Cette figure de l’IPNO a marqué les esprits, par son caractère et en tant que symbole d’une coopération entre la France et le Japon. En 2008, à l’occasion des 150 ans des relations France-Japon, l’IN2P3 a organisé, une cérémonie en sa mémoire, au siège du CNRS. La même année, son nom été attribué au LIA (Laboratoire international associé) Franco-Japonais FJ-PPL. Et enfin, au Japon, à l’université Ochanomizu dont elle était issue, une cérémonie équivalente eut lieu et 2 timbres furent édités en son honneur.

En 2008 la post-doctorante japonaise qui avait organisé les 2 cérémonies, et qui provient de la même université japonaise que Toshiko Yuasa, s’est vue attribuer un poste CNRS au LAL, bouclant ainsi la boucle d’une jolie histoire entre la France et le Japon.

Pour en savoir plus sur cette histoire une biographie de Toshiko Yuasa est disponible ici.

— anecdote fournie par le Laboratoire de l’Accélérateur Linéaire (LAL), unité mixte de recherche du CNRS/IN2P3 et de l’Université Paris Sud, dans le cadre des 40 ans de l’IN2P3.


Summer is a productive time for us and tends to involve lots of traveling.


Fig. 1: My 2010 PDG booklet and my Japan Rail pass. I am not sure which is more important.

Hi All,

As fellow QDer Aidan posted this morning, it is conference season, again! Lots and lots of conferences for all the different sub-sub-fields in physics. Two big ones on my plate are Neutrino 2012, which is about ALL things that begin with the letters n-e-u-t-r-i-n-o and end in the letter -s; and ICHEP 2012, which is the mother-of-all high energy physics conferences. (Much more on ICHEP in a few weeks seeing that I have been invited to be a panelist on the “Social Media in Science Communication” session. Trust me, it will be good.)

Neutrinos are all the rage these days: from #FTLneutrinos to θ13, we are determined to know precisely how neutrinos work. Fortunate for us, there is a huge international conference, imaginatively called “Neutrino,” next week in the gorgeous, ancient city of Kyoto, Japan, and you can definitely count on there be a Quantum Diaries presence. QDer Zeynep Isvan will be around, and, with the suggestion from my chief editor, Daisy, I will be live-blogging the plenary sessions when I can. The programme is also already online, so feel free to check out the topics.

After the conference, however, is when things get kicked into high gear for me. A few months ago I won a NSF summer fellowship to research dark matter in Japan. It is now summer, so for the next three months I will be a visitor at University of Tokyo’s prestigious Institute for the Physics and Mathematics of the Universe, or IPMU for short. I still have plots to make for a meeting today and my first flight is (literally) 24 hours from now. At least I have my trusty messenger bag already packed with two of the more important things: a Japan Rail pass and my 2010 PDG booklet!

See you in Kyoto!


Happy Colliding

– richard (@bravelittlemuon)

PS While adding links and sources to the post, I found my IPMU host on Twitter.

PPS More than 3.6 fb-1 worth of data has already been collected by the collider experiments.


Fig. X: Conference Poster for Neutrino 2012 in Kyoto, Japan (http://neu2012.kek.jp/)

Fig. 2: Conference Poster for Neutrino 2012 in Kyoto, Japan (http://neu2012.kek.jp/)


–by T. “Isaac” Meyer, Head of Strategic Planning & Communication

I am in Japan again. The sun rises early through fog and then sets early in a sea of chalky pastels. And what I am thinking about on this visit is global leadership. And not because of the Euro debt crisis or the silly antics of American politics or even the struggles of Canadian government as it tries to keep believing in a bright future amidst all this.

I’m thinking about how the nature of effective global leadership is starting to change. In the traditional view, a leader is a person up front, giving directions, listening to feedback from the team, and providing an overall sense of direction while representing the team to the outside world. Sometimes the leader will walk among the ranks and comment from the back of the room about how it’s going. But it is really only in the past few decades that we’ve seen “leadership from the back of the room” start to take off. What is it? Its where the leader puts himself or herself at the service of the group. Where the leader is mostly just listening and then identifying when consensus or agreement appears to be present. A leader “from the back of the room” would ask questions and make requests of others to present ideas or propose pathways for action.

In an article a few years ago, some economists called this “collaborative advantage.” They noted, “Strong possibilities that the nation can benefit by developing ‘mutual gain’ policies. Doing so requires a fundamental change in global strategy. The United States should move away from an almost certainly futile attempt to maintain dominance and toward an approach in which leadership comes from developing and brokering mutual gains among equal partners,” (L. Lynn and H. Salzman, “Collaborative Advantage,” Issues in Science and Technology, Winter 2006, p. 76). They say this collaborative advantage,  “…comes not from self-sufficiency or maintaining a monopoly but from being a valued collaborator at various levels in the international system.”

What does this have to do with my global travel this week? Well, I think Japan is in the process of taking on a leadership at the “back of the room” for the entire world. Traditionally, Japan has been a leader out in front by being extremely focused and very dedicated. In science and technology, Japan leads and invites others to follow after it has a leadership position. But in a modern world where everyone is competing and everyone needs a partner, it is the countries who can get other countries to work together that will ultimately succeed the most.

I’m here for the KEK/TRIUMF Scientific Symposium, an annual event where the two labs on either side of the Pacific Ocean review opportunities for collaboration on accelerator-based science. This time, though, there is a difference in the air. Both laboratories are looking for opportunities that are concrete and truly joint: where together they can offer a combined research or development capability that they wouldn’t be able to do individually. For instance, both TRIUMF and KEK provide beams of muons that are used for characterizing the magnetic properties and behavior of novel nanomaterials. In the next round of upgrades, both labs will assist each other with implementation and commissioning. But rather than collaborating to ensure that each has a complete and working system, the labs could partner so that they have complementary capabilities—and then send some of their users to the OTHER lab when those special capabilities are needed. This may sound obvious and it may sound trivial, but it is a profound shift. It’s like having the Chevy dealer tell you that for your needs, you really need a Ford and he/she will give you a ride over to the Ford dealership for free.

And so, globalization and the flat earth takes another step forward. Japan is looking for partners in science, Canada is looking to develop “collaborative advantages,” and Greece struggles to choose a premier. We will have peace on this planet sometime soon!

On a personal note, I have to say that this has been one of my more difficult trips to the Big Island of Japan. I am on a short-term eating plan (aka diet) to trim some weight and more importantly, interrupt my habit of eating everything in front of me. So for each very elegant and hand-crafted meal I sit down to at Japan, I am picking and choosing what I can actually taste and eat to minimize carbs and sugars. *sigh* I must come back again to fully savour this beautiful and noble country!


Following the Fukushima Story

Wednesday, March 16th, 2011

— By T. “Isaac” Meyer, Head of Strategic Planning and Communications

The series of events at the Fukushima nuclear reactors in Japan following the massive earthquake and tsunamis will be something many of us will remember forever. If we ever doubted that we truly live in the “atomic age” as it was so fondly dubbed in the 1960s, we must surrender conception that now. From medical isotopes that diagnose disease and save lives to nuclear power plants that reduce greenhouse gas emissions and sometimes breakdown and create massive drama, we humans do live in a world that is controlled and affected by “physics” beyond the human eye.

As a science communicator for Canada’s national laboratory for particle and nuclear physics, I’ve been working almost non-stop to help track, interpret, and translate the unfolding drama of the heroic efforts to cool down and shut down the Fukushima Daiichi nuclear power plants. With the team here at TRIUMF, we have provided 15 radio interviews, five TV interviews, and numerous print comments in addition to online exchanges. Its not that we have special communications channels, its not that we operate a nuclear power plant, and its not that we have a crystal ball.

No, its that we know the difference between a dose and a dose rate; we have people who can translate the stream of high-quality information coming straight from Japanese twitter feeds (TRIUMF’s first PhD student is a now a Univ of Tokyo professor in Japan who is leading much of the scientific and technical communication efforts in the crisis); and we’ve been around radiation before. We are a particle and nuclear physics laboratory and we have radiation health and safety people that rival the best in the world. We don’t deal in quantities of radiation or material nearly as large as a nuclear power plant, of course, but we can shed some light on the issues and the context of what constitutes significant and what does not. In a way, providing this interpretation and even guidance is part of our responsibility as publicly funded researchers.

But it is a challenging and frustrating situation. Getting hard facts about what is going on in Fukushima Daiichi is difficult. This is because of language barriers, distance/transmission delays, cultural attitudes (parts of Japanese culture are more reserved than North America and its media), and the tremendous concentration required to actually focus on resolving the situation. You’ll notice that when the fire department is extinguishing a house fire, its only afterward that the fire chief starts talking with the media. All of her attention is on managing the crisis. As I said, its a tough challenge to balance getting the job and sharing news with the public—particularly when it might impact them.

I’ve thought about trying to blog about the situation, but the reality is that I’d be behind and since we don’t have all the facts, some of it would be speculation. I can say that the west coast of the U.S. and Canada, despite the deteroriating fuel material at Daiichi, is still quite safe from “blowover” of radioactive dust. The latest summary of where things are at is from the Washington Post with this nice graphic. There are even online geiger counters in Tokyo where you can check the “background radiation” weather.

My thoughts and prayers are with the people of Japan. What is making headlines this week will change their country forever…as it will the entire world.