• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Posts Tagged ‘Lab’

Powerless Haikus

Thursday, April 19th, 2012

Jordan is an English major on a Communications co-op term at TRIUMF. When the power went out at TRIUMF, he was asked to write about what it was like. He decided to write it in haiku. He had never written a haiku before. It showed.

I have never written a haiku before. After the power came on, I Googled haikus and these barely count.  Enjoy.

 

The power is out

There is nothing left to do

Except write haikus

 

Computers shut off

I forgot to save my work

Many strong expletives

 

Eyes raised to the ceiling

A brief respite from the screen

It is sunny out?

 

A brief argument

On the location of Spain

No one can Google

 

Two scientists turn

Engage in deep discussion

Or maybe shallow

 

Silent Meson Hall

Punctuated by a laugh

Cannot find the source

 

The power is back

I am Googling some haikus

Amateurish, I

— Written by Jordan Pitcher (Communications Assistant)

Share

This is a follow-up from our last post where Paul Schaffer, Head of the Nuclear Medicine Division at TRIUMF, was talking about his experience of being in the media spotlight. In this post, Paul talks more in-depth about the science of medical isotopes.

It all started 19 months ago. A grant that would forever change my perspective of science geared specifically toward innovating a solution for a critical unmet need—in this situation, it was the global isotope crisis. In 2010, not too long out of the private sector, I was already working on an effort funded by NSERC and CIHR through the BC Cancer Agency to establish the feasibility of producing Tc-99m—the world’s most common medical isotope—on a common medical cyclotron. The idea: produce this isotope where it’s needed, on demand, every day, if and when needed. Sounds good, right? The problem is that the world had come to accept what would have seemed impossible just 50 years ago.

The current Tc-99m production cycle, which uses nuclear reactors. Image courtesy of Nordion.

We are currently using a centralized production model for this isotope with just a six hour half-life. This model involves just a handful of dedicated, government-funded research reactors, producing molybdenum-99 from highly enriched uranium (which is another issue for another time). Moly, as we’ve come to affectionately call it, decays via beta emission to technetium, and when packaged into alumina columns, is sterilized, and encased in a hundred pounds of lead. It is then shipped by the thousands to hospitals around the world. The result: the world has come to accept Tc-99m, which is used in 85% of the 20 to 40 million patient scans every year as an isotope available from a small, 100 pound cylinder that was replaced every week or so, without question, without worry. Moly and her daughter were always there…but in 2007 and again in 2009, suddenly they weren’t. The world had come to realize that something must be done.

In the middle of our NSERC/CIHR effort, we were presented with an opportunity to write a proof-of-concept grant based on the proof-of-feasibility we were actively pursuing. Luckily, the team had come far enough to believe we were on the right track. We believed that large scale curie-level production of Tc-99m using existing cyclotron technology was indeed possible. The ensuing effort was—in contrast to the current way of doing things—ridiculous.

With extensive, continuous input from several top scientists from around the country, I stitched together a document 200 pages long. It was a grant that was supposed to redefine how the most important isotope in nuclear medicine was produced. 200 pages, well 199 to be exact, describing a process—THE process—we were hopefully going to be working on for the next 18 months. We waited…success! And we began.

The effort started the same way as the document – with nothing more than a blank piece of paper. Blank in the sense that we knew what we had to do, we just had not defined exactly how we were going to achieve our goal. But what happened next was a truly remarkable thing; with that blank sheet, I witnessed first-hand a team of people imagine a solution, roll up their sleeves and turn those notions into reality.

If you would like to read the PET report, click here

 

 

Share

Paul Schaffer is the head of the Nuclear Medicine Division at TRIUMF. For the past 18 months, he and his team have been devising a method for Canada and the world to have an alternative way to produce medical isotopes. Currently, these isotopes are created on aging nuclear reactors, which are beginning to show signs of wear by needing emergency repairs. These repairs stop the flow of isotopes, affecting hundreds of thousands of people around the world. This is an inside perspective of what it means to work on the front line, and be in the media spotlight.

I’m going to start this post with the day I had the privilege of standing in front of a group of reporters along with a few of my esteemed colleagues to announce that we had, in fact, delivered on a promise we had made just over a year ago; the promise of making medical isotopes with existing hospital cyclotrons. We had set out to prove that it was possible to produce Tc-99m on a small medical cyclotron and at quantities sufficient to supply a large urban centre. The solution to Tc-99m shortages is to decentralize production. It was an example of Canadian innovation at its best – by taking a group of existing machines in existing facilities already tasked at making various other medical isotopes and extending the functionality of those facilities to produce another isotope.

Paul presenting his team's findings

The response from the press was remarkable to witness. The interest was swift, broad, and far reaching. The 24-hour news cycle had begun and with it came a deluge of requests for radio, TV, and print interviews. In the ensuing days I read a number of wonderful reports from capable reporters, often writing about a topic well outside of their background or familiarity. For that, I admire the work that they collectively pulled together in the short amount of time involved.

Something else happened, though; something I didn’t anticipate – the ensuing media blitz ended up becoming a very personal social experiment, an intense self-examination. On the way to my first-ever national television interview, I can distinctly remember reality sinking in—for most of my life, I’ve dealt with significant hearing loss. In my ever-quiet world, acutely and perpetually punctuated by tinnitus, verbal communication can be a consuming task.

It is a fact that I comprehend only 33% of the words spoken to me and that my brain fills the gaps using whatever facts it can absorb from my surroundings—expressions, moving lips, and other non-verbal cues. In that car on the way to the interview, I couldn’t help but to continuously wonder about how I would handle verbal questions on camera? What do you say on live TV when you can’t for the life of you figure out what your conversational counterpart is saying? My wingman kept reassuring me, giving background from experience and many, many reassuring comments; but deep down I had to wonder, was this the moment when the whole situation would finally come undone? My charade of being able to hear the world around me would finally end. Worse still, had the moment come to sell the team’s amazing accomplishments on national TV, with a significant number of people literally watching; and all I kept wondering was: will it fall apart simply over an unheard or misinterpreted question? Good thing most communication is non-verbal.

The interview ended up being remote, with the reporters in Ontario and a conspicuous 5 second ‘safety’ delay between what I thought I heard and what showed up on the TV monitor facing me. Five seconds was long enough for them to cut out a fleeting wardrobe malfunction, should I become a bit too passionate during my scientific descriptions, but not nearly long enough to spare a poor soul a repeat question. So, seated in a large, empty, and thankfully quiet studio it began with a single chair, bright lights, and an audio test – ‘please count to 5’ came in over the ear piece…this out of context and no non-verbal queue jolted my fear into reality. I couldn’t understand the question. Out of the corner of my eye, I could see my wingman turn a shade lighter. Worry was setting in. The in-studio producer was almost dumbstruck – this ‘expert’ couldn’t count to five.  45 seconds to ‘go’ and he repeated the question. I got it, counted to five….30 seconds….15, an ambulance was coming, getting louder, I couldn’t hear the commercial any longer…..10, the ambulance was on the street directly below. I had to look away from the TV screen, as the delay was overwhelmingly distracting. 5 seconds. The sirens were starting to recede and before you knew it, I was live.

Paul on CTV News

At first I didn’t want to watch the interview, but family, friends and colleagues from across Canada starting chiming in and eventually convinced me to watch. I felt satisfied with the results, relieved that I had heard every question, answered everything without wandering or forgetting what the question was, covering the topics I wanted to cover. However, I was definitely watching an objective projection of somebody I wasn’t familiar with. I won’t get into the details of what I saw – it’d be different for everyone, but the experience has been life altering, as has this project. That said, I’m proud of the team that has worked so well and so hard together for the past 18 months. It’s been a remarkable project on all fronts. Whether our results continue to keep their momentum and become a permanent solution to the isotope issues that plagued us for two years remains to be seen. I do know success when I see it, and this team of Canadian scientists, engineers, and medical professionals should all be immensely proud of what they have done. They are Canadian innovation at its best.

The team of TRIUMF scientists Paul collaborated with on the groundbreaking project

 

Share

My Time at AAAS 2012

Thursday, March 8th, 2012

Jordan is an English major on a Communications co-op term at TRIUMF. This is his take on the AAAS conference that took place this February in Vancouver. AAAS is a conference that gathers researchers from around the world from all disciplines to share ideas with each other, the media, and the public.

It is difficult to write about any event, be it a concert or a science convention, without slipping into a pattern that resembles a mad-lib (e.g. “I saw noun and it was adjective!”). In order to avoid that particular pitfall, it’s important to focus on the individual connection one forges with the event, the broader implications of the event, and the emotions evoked by it. AAAS 2012 was, surprisingly, an event suffused with emotion. I say “surprisingly” because “science” is a word that carries with it the connotation of a stodgy atmosphere built upon cold rationalism. Despite this, the atmosphere at AAAS 2012 was built on anything but.

AAAS 2012 began on a typical (see: rainy) Friday morning in Vancouver, but the mood inside the exhibit hall was in stark contrast to the gloom outside. Though it was quite early in the morning and a number of exhibitors were frazzled and silently checking and rechecking their to-do lists, the hall quickly became characterized by laughter and discussion. People dropped by booths asking after old friends they had previously worked with, smiling at the old memories and the assurances that their friends were doing well. People who knew each other only by reputation met on the floor of the exhibit hall and traded stories about their current projects and experiments. People who did not know one another perused booths, asked questions, handed out business cards, and walked away deep in thought. The entire exhibit hall was a microcosmic example of the scientific community as a whole; a community fueled by curiosity, collaboration, camaraderie, and a friendly sense of competition. Though Friday was not open to the public, there were still a number of unique visitors, particularly American Junior Academy of Science (AJAS) members to students who had registered for student scholarships through TRIUMF and the BC Innovation Council (BCIC). These students were given a full conference pass and a one-year membership to AAAS. The AJAS members and student scholarship recipients displayed a sense of curiosity and mental alacrity befitting the next generation of scientists as they interacted with one another and the ideas presented at numerous booths.

The free public event, Family Science Days, opened on Saturday and it made the excited atmosphere of Friday seem funereal. The enthusiastic chatter of the children who attended Family Science Days with their parents in tow created the feeling only generated by like-minded individuals, radically diverse in ages and backgrounds, interacting with one another without any sense of pretension or disingenuousness. It was an interesting example of how science has the power to unify people. This is fitting, since the theme of the conference was  “Flattening the World: Building a Global Knowledge Society.” To me, the theme of the conference was fully realized when I looked around and saw the old educating the young and the young inspiring the old with a vigor for attempting to understand the unknown and a heavy reliance on the words “why” and “how.” I’m sure this brought a smile to every scientist’s face, knowing that the inquisitiveness that has spurred scientific discovery for thousands of years remains an inextinguishable human trait that will always express itself, irrespective of one’s age or background.

In describing the emotions I witnessed, I have neglected to mention the emotions I experienced during my time at AAAS 2012. Being an exhibitor, I suspect I felt more stress than many of the regular attendees. It wasn’t like being stressed about exams; it was more like unveiling a piece of art and stressing about whether people would enjoy it – more butterflies than flop sweat. As my comrades—wartime slang is perfectly appropriate in this situation, I think—and I began to entertain visitors with magnet demonstrations and educate them about cyclotrons, the worry dissipated and gave way to excitement. People were enjoying our booth and I got to test the boundaries of my memory, attempting to recount the entire Wikipedia page for “Cyclotrons” and “Higgs boson.” I’m not a scientist—far from it, in fact—but I enjoyed the lively discussions and even managed to actually learn a thing or two in the process.

 

Share