• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Flip
  • Tanedo
  • USLHC
  • USA

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Karen
  • Andeen
  • Karlsruhe Institute of Technology

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Alexandre
  • Fauré
  • CEA/IRFU
  • FRANCE

Latest Posts

  • Jim
  • Rohlf
  • USLHC
  • USA

Latest Posts

  • Emily
  • Thompson
  • USLHC
  • Switzerland

Latest Posts

Posts Tagged ‘mesons’

Mixing it up

Wednesday, November 14th, 2012

One of the other results presented at the Hadron Collider Physics Symposium this week was the result of a search for \( D^{0}–\bar{D}^{0}\) mixing at LHCb.

Cartoon: If a \(D^0\) is produced, at some time t later, it is possible that the system has "oscillated" into a \(\bar{D}^0\). This is because the mass eigenstates are not the same as the flavor eigenstates.

Neutral meson mixing is predicted for any neutral meson system, and has been verified for the \(K^0–\bar{ K}^0\), \(B^0–\bar{B}^0\) and \(B_s^0–\bar{B_s}^0\) systems. However, for the \(D^0–\bar{D}^0\) system, no one measurement has provided a result with greater than \(5\sigma\) significance that mixing actually occurs, until now.

 

 

The actual measurement is of \(R(t)=R\), which is effectively the Taylor expansion of the time dependent ratio of \( D^0 \rightarrow K^+ \pi^-\) (“Wrong Sign” decay) to \( D^0\rightarrow K^- \pi^+\) (“Right Sign” decay). Charge conjugates of these decays are also included. There is a “Wrong Sign” and a “Right Sign” because the Right Sign decays are much more probable, according to the standard model.

The mixing of the \(D^0–\bar{D}^0\) system is described by the parameters \(x = \Delta m /\Gamma\) and \(y = \Delta \Gamma / 2\Gamma\), where \(\Delta m\) is the mass difference between the \(D^0\) and \(\bar{D}^0\), \(\Delta \Gamma\) is the difference of widths of the mass peaks, and \( \Gamma\) is the average width. What appears in the description of \(R\), however, is \( x’\) and \( y’\), which give the relations between the \(x\) and \(y\) with added information about the strong phase difference between the Right Sign and Wrong Sign decays. The important part about \(x’\) and \(y’\) are that they appear in the time dependent terms of the Taylor expansion of \(R\). If there were no mixing at all, then we would expect the ratio to remain constant, and the higher order time dependence to vanish. If mixing does occur, however, then a clear, non-flat trend should be seen, and hence a measurement of \(x’\) and \(y’\). That is why the time dependent analysis is so important.

Fit of ratio of WS and RS decays as a function of decay time of the D meson. Flat line would be no mixing, sloped line indicates mixing. From http://arxiv.org/pdf/1211.1230.pdf

Result of the mixing parameter fit of the neutral D meson system. 1,3 and 5 standard deviation contours are shown, and the + represents no mixing. From http://arxiv.org/pdf/1211.1230.pdf

The result is a 9.1 \(\sigma\) evidence for mixing, which is also in agreement with previous results from BaBar, Belle and CDF. On top of confirming that the neutral D meson system does mix, this result is of particular importance because, coupled with the result of CP violation in the charm system, it begs the question whether or not there is much more interesting physics beyond the standard model involving charm just waiting to be seen. Stay tuned!

Share

Hi All,

Exciting news came out the Japanese physics lab KEK (@KEK_jp, @KEK_en) last week about some pretty exotic combinations of quarks and anti-quarks. And yes, “exotic” is the new “tantalizing.” At any rate, I generally like assuming that people do not know much about hadrons so here is a quick explanation of what they are. On the other hand, click to jump pass “Hadrons 101″ and straight to the news.

Hadrons 101: Meeting the Folks: The Baryons & Mesons

Hadrons are pretty cool stuff and are magnitudes more quirky than those quarky quarks. The two most famous hadrons, the name for any stable combination of quarks and anti-quarks, are undoubtedly the proton and the neutron:

According to our best description of hadrons (Quantum Chromodynamics), the proton is effectively* made up two up-type quarks, each with an electric charge of +2/3 elementary charges**; one down-type quark, which has an electric charge of -1/3 elementary charges; and all three quarks are held together by gluons, which are electrically neutral. Similarly, the neutron is effectively composed of two down-type quarks, one up-type quark, and all the quarks are held strongly together by gluons. Specifically, any combination of three quarks or anti-quarks is called a baryon. Now just toss an electron around the proton and you have hydrogen, the most abundant element in the Universe! Bringing together two protons, two neutrons, and two electrons makes helium. As they say, the rest is Chemistry.

However, as the name implies, baryons are not the only type of hadrons in town. There also exists mesons, combinations of exactly one quark and one anti-quark. As an example, we have the pions (pronounced: pie-ons). The π+ (pronounced: pie-plus) has an electric charge of +1 elementary charges, and consists of an up-type quark & an anti-down-type quark. Its anti-particle partner, the π- (pronounced: pie-minus), has a charge of -1, and is made up of an anti-up-type quark & a down-type quark.

 

If we now include heavier quarks, like strange-type quarks and bottom-type quarks, then we can construct all kinds of baryons, mesons, anti-baryons, and anti-mesons. Interactive lists of all known mesons and all known baryons are available from the Particle Data Group (PDG)***. That is it. There is nothing more to know about hadrons, nor has there been any recent discovery of additional types of hadrons. Thanks for reading and have a great day!

 

* By “effectively,” I mean to ignore and gloss over the fact that there are tons more things in a proton, like photons and heavier quarks, but their aggregate influences cancel out.

** Here, an elementary charge is the magnitude of an electron’s electron charge. In other words, the electric charge of an electron is (-1) elementary charges (that is, “negative one elementary charges”). Sometimes an elementary charge is defined as the electric charge of a proton, but that is entirely tautological for our present purpose.

*** If you are unfamiliar with the PDG, it is arguably the most useful site to high energy physicists aside from CERN’s ROOT user guides and Wikipedia’s Standard Model articles.

The News: That’s Belle with an e

So KEK operates a super-high intensity electron-positron collider in order to study super-rare physics phenomena. It’s kind of super. Well, guess what. While analyzing collisions with the Belle detector experiment, researchers discovered the existence of two new hadrons, each made of four quarks! That’s right, count them: 1, 2, 3, 4 quarks! In each case, one of the four quarks is a bottom-type quark and another is an anti-bottom quark. (Cool bottom-quark stuff.) The remaining two quarks are believed to be an up-type quark and an anti-down type quark.

The two exotic hadrons have been named Zb(10610) and Zb(10650). Here, the “Z” implies that our hadrons are “exotic,” i.e., not a baryon or meson, the subscript “b” indicates that it contains a bottom-quark, and the 10610/10650 tell us that our hadrons weigh 10,610 MeV/c2 and 10,650 MeV/c2, respectively. A proton’s mass is about 938 MeV/c2, so both hadrons are about 11 times heavier than the proton (that is pretty heavy). The Belle Collaboration presser is really great, so I will not add much more.

Other Exotic Hadrons: When Barry met Sally.

For those keeping track, the Belle Collaboration’s recent finding of two new 4-quark hadrons makes it the twelfth-or-so “tetra-quark” discovery. What makes this so special, however, is that all previous tetra-quarks have been limited to include a charm-type quark and an anti-charm-type quark. This is definitely the first case to include bottom-type quarks, and therefore offer more evidence that the formation of such states is not a unique property of particularly charming quarks but rather a naturally occurring phenomenon affecting all quarks.

Furthermore, it suggests the possibility of 5-quark hadrons, called penta-quarks. Now these things take the cake. They are a sort of grand link between elementary particle physics and nuclear physics. To be exact, we know 6-quark systems exist: it is called deuterium, a radioactive stable isotope of hydrogen (Thanks to @incognitoman for pointing out that deuterium is, in fact, stable.). 9-quark systems definitely exist too, e.g., He-3 and tritium. Etc. You get the idea. Discovering the existence of five-quark hadrons empirically establishes a very elegant and fundamental principle: That in order to produce a new nuclear isotope, so long as all Standard Model symmetries are conserved, one must simply tack on quarks and anti-quarks. Surprisingly straightforward, right? Though sadly, history is not on the side of 5-quark systems.

Now go discuss and ask questions! :)

Run-of-the-mill hadrons that are common to everyday interactions involving the Strong Nuclear Force (QCD) are colloquially called “standard hadrons.” They include mesons (quark-anti-quark pairs) and baryons (three-quark/anti-quark combinations). Quark combinations consisting of more than three quarks are called “exotic hadrons.”

 

 

 

 

Happy Colliding.

- richard (@bravelittlemuon)

 

PS, I am always happy to write about topics upon request. You know, QED, QCD, OED, etc.

http://en.wikipedia.org/wiki/Neutron
Share
K_short meson

K_short meson

One of the most amazing characteristics of science is reproducibility, i.e., experimental results can be reproduced by independent tests.  So, the first thing to check in any physics experiment is to see if you can reproduce what older, well tested, experiments have found running in similar conditions.  CMS did this very quickly last November when it presented its beautiful di-photon resonance peak, but the story does not end there.

Since December, CMS has taken advantage of the technical stop scheduled for the LHC in order to improve the reliability for the cooling system in the end-caps of the detector and, meanwhile, physicists have put a lot of effort in analyzing the data gathered during those few weeks of operation, mostly at 900 GeV of energy.

The results are quite fantastic.  I mean, ok, we know these particles (resonances) for quite some time now (most of them have been known for more than 40 years) and we can easily “google” them and obtain all their information, but to see them coming alive in our detector is probably only second to experiencing the actual discovery.  To make this succint, we know now that our detector is capable of reconstructing, with an astonishing precision,  the invariant mass of many mesons and baryons ["vintage" Kaon (short) resonance is shown in the plot as an example!!], such as pions, eta mesons, kaons, lambda baryons, etc, that were seen and studied many years ago by different experiments around the world.  Seeing these beloved resonances is not only cool, but they are necessary to calibrate the detector and to be in a much better shape for the next round of operations of the LHC, which will happen most likely in middle February.  Stay tuned, the next big thing will be seeing  Z/W bosons, for example, and from then a plethora (hopefully) of new and exciting physics (particles).

Edgar Carrera (Boston University)

Share