• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Flip
  • Tanedo
  • USLHC
  • USA

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Karen
  • Andeen
  • Karlsruhe Institute of Technology

Latest Posts

  • Seth
  • Zenz
  • USLHC
  • USA

Latest Posts

  • Alexandre
  • Fauré
  • CEA/IRFU
  • FRANCE

Latest Posts

  • Jim
  • Rohlf
  • USLHC
  • USA

Latest Posts

  • Emily
  • Thompson
  • USLHC
  • Switzerland

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘physics’

– by T.I. Meyer, Head of Strategic Planning & Communication

This past Saturday, I attended a “celebration of life” for Erich W. Vogt, one of the founders of TRIUMF and perhaps the last of the generation of “Renaissance-man” style leaders who helped shape the modern era of particle and nuclear physics.

“Celebration of life” is North American politeness for memorial service. Erich passed away on February 19, 2014, at the age of 84. He was with family and friends until the very end, and each day he would tell us a new historical anecdote, hilarious and penetrating as always, and then comment on his intentions to return to work at TRIUMF the next morning.

The service itself was spectacular with about 400 people packed into the former faculty club on the UBC campus. We were regaled with a litany of precise, powerful speeches that mirrored Erich’s personality in so many ways: witty, thoughtful, provocative, and unabashed. The collected wisdom and life experience in the room was stupefying, perhaps an even larger testament to the impact that Erich had on all of us—and the entire world.

I went with my wife and our three-month old daughter. I told people that I was hoping she’d be inspired by the legacy and soak up some of the aura of longevity and greatness.

But that got me to thinking. Erich was one of “those” scientists, the ones who were shrewd, sharp-witted, and educated in everything from particle physics and international politics to porcelain plateware and the development of the modern piano. In his spare time, he met Einstein, befriended prime ministers, raised money for and founded a laboratory in Israel, wrote an authoritative history of his family and its origins, and helped articulate and lead the vision for a national subatomic-physics laboratory in Canada that became TRIUMF.

We can look through the records and the recollections of those who knew Erich to trace out how he became who he was. But I often wonder where the next generation of Erichs is coming from. Are they here and I just don’t see them? Is our society still inspiring and retaining people like this? Is there still a valuable role for these types of “Renaissance” people? Moreover, are they needed, or is there even a place for them in our 21st century culture?

It does seem that the best and brightest of any generation tend to seek their personal, financial, and intellectual fortunes at the edgy frontiers. Some people argue that science has faded from the position of being The Most Exciting and Challenging Frontier and is now replaced by entrepreneurship, social expression, and so on. These people would argue that the next generation of “Renaissance” types are still there, but they are no longer flocking to science, or even more specifically, to physics. They are simply going elsewhere.

Others will argue that the modern system of measuring achievement works against the Renaissance individual. In the 20th century, the ambitious intellectual was able to develop mastery in multiple fields and to pursue vigourously multiple interests in an environment that placed fewer burdens on them. The culture allowed—and even encouraged—such a person to seek greatness. But in today’s landscape, to be successful, one needs to be increasingly specialized and spend more time writing grants, reviewing articles, and attending soft-skills training classes. It is said that we’ve moved into the era where “Jack of all trades, master of none” holds true, and that is how we dismiss the Renaissance person.

But are we in a society that no longer allows these broad-minded, passionate individuals to blossom and flourish? Has there been a recalibration of culture where these types are now as important as the focused specialist? Or perhaps the world is so complicated and fractured that a classical approach to mastery is simply ineffective?

In my view, the truth is somewhere in the middle. The 21st century is going to require a new type of individual to make pivotal contributions. The qualities of leadership and greatness do last more than one generation, but they evolve perhaps every three or four generations. Instead of wishing for the leaders of the last era, our task is to look at the world today: who is making an impact, what are they bringing to the table, and how can we make more of that happen?

And in our world of networks (virtual and social) and complexities, greatness can emerge more easily from the combined contributions of dozens or even hundreds of people. For instance, a select few physicists won the Nobel Prize for the experimental work that discovered the electron, the neutrino, and so on. For the Higgs boson, however, the Nobel Prize went to the two surviving theorists who posited its existence, in part because the discovery-in-reality was the product of a cast of 10,000 people. It would be silly to try and select just two or three people that made it happen. It took everyone! Now, and perhaps for the 21st century, that is greatness.

Looking across the frontiers of science, who are the leaders today? Are there common characteristics? How do they distinguish themselves?

Tell me what you see!

Share

Grad School in the sciences is a life-changing endeavour, so do not be afraid to ask questions.

Hi Folks,

Quantum Diaries is not just a place to learn the latest news in particle physics; it is also a resource. It is a forum for sharing ideas and experiences.

In science, it is almost always necessary to have a PhD, but what is a PhD? It is a certification that the holder has demonstrated unambiguously her or his ability to thoroughly carry out an independent investigation addressing a well-defined question. Unsurprisingly, the journey to earning a PhD is never light work, but nor should it be. Scientists undertake painstaking work to learn about nature, its underpinnings, and all the wonderful phenomena that occur in everyday life. This journey, however, is also filled with unexpected consequences, disappointment, and sometimes even heartbreak.

It is also that time of year again when people start compiling their CVs, resumes, research statements, and personal statements, that time of year when people begin applying for graduate programs. For this post, I have asked a number of good friends and colleagues, from current graduate students to current post docs, what questions they wished they had asked when apply for graduate school, selecting a school, and selecting a research group.

However, if you are interested in applying to for PhD programs, you should always first yourself,  “Why do I want a research degree like a PhD?”

If you have an experience, question, or thought that you would like to share, comment below! A longer list only provides more information for applicants.

As Always, Happy Colliding

- Richard (@bravelittlemuon)

PS I would like to thank Adam, Amy, John, Josh, Lauren, Mike, Riti, and Sam for their contributions.

Applying to Graduate School:

“When scouting for grad schools, I investigated the top 40 schools in my program of interest.  For chemistry, research primarily occurs in one or two research labs, so for each school, I investigated the faculty list and group research pages.  I eliminated any school where there werre fewer than two faculty members whose fields I could see myself pursuing.  This narrowed down my list to about a dozen schools.  I then filtered based on location: I enjoy being near a big city, so I removed any school in a non-ideal location.  This let me with half a dozen schools, to which I applied.” - Adam Weingarten, Chemistry, Northwestern

“If there is faculty member you are interested in working for, ask both the professor and especially the students separately about the average length of time it takes students to graduate, and how long financial support might be available.” – Lauren Jarocha, Chemistry, UNC

“My university has a pretty small physics program that, presently, only specializes in a few areas. A great deal of the research from my lab happens in conjunction with other local institutes (such as NIST and NIH) or with members of the chemistry or biology departments. If you are interested in a smaller department, ask professors about Institutes and interdisciplinary studies that they might have some connection to, be it within academia or industry.” – Marguerite Brown, Physics, Georgetown

“If you can afford the application fees and the time, apply as broadly as you can.  It’s good to have options when it comes time to make final decisions about where to go. That said, don’t aim too high (you want to make sure you have realistic schools on your list, whatever “realistic” means given your grades and experience), and don’t aim too low (don’t waste time and money applying to a school that you wouldn’t go to even if it was the only school that accepted you, whether because of academics, location, or anything else).  Be as honest as possible with yourself on that front and get input from trusted older students and professors.  On the flip side, if you don’t get rejected from at least one or two schools, you didn’t aim high enough.  You want a blend of reach schools and realistic schools.” – Amy Lowitz, Physics, Wisconsin

Choosing a School

“One of the most common mistakes I see prospective graduate students make is choosing their institution based on wanting to work with a specific professor without getting a clear enough idea of the funding situation in that lab.  Don’t just ask the professor about funding.  Also ask their graduate students when the professor isn’t present.  Even then, you may have to read between the lines; funding can be a delicate subject, especially when it is lacking.” – Amy Lowitz, Physics, Wisconsin

“If you have a particular subfield/group you *know* you are interested in, check how many profs/postdocs/grads are in these groups, check if there are likely to be open slots, and if there are only 1 or 2 open slots make sure you know how to secure one. If they tell you there are currently no open slots, take this to mean that this group is probably closed for everything but the most exceptional circumstances, and do not take into account that group when making your decision.” – Samuel Ducatman, Physics, Wisconsin

“When choosing a school, I based my decision on how happy the grad students seemed, how energetic/curious the faculty appeared, and if the location would allow me to have extracurricular pursuits (such as writing, improv, playing games with people, going to the movies…basically a location where I could live in for 4-6 years).” – Adam Weingarten, Chemistry, Northwestern

“At the visitor weekend, pay attention to how happy the [current] grads seem. Remember they are likely to be primarily 1st years, who generally are the most happy, but still check. Pay attention to the other students visiting, some of them will be in your incoming class. Make sure there is a good social vibe.” – Samuel Ducatman, Physics, Wisconsin

“When I was visiting a prospective grad student, there was a professor at a university I was visiting whose research I was really interested in, but the university would only allow tuition support for 5 years. When I asked his students about graduation rates and times, however, the answer I got was, ‘Anyone who graduates in 5 years hasn’t actually learned anything, it takes at least 7 or 8 years before people should really graduate anyway. Seven years is average for our group.’ In some fields, there is a stigma associated with longer graduation times and a financial burden that you may have to plan for in advance.” – Lauren Jarocha, Chemistry, UNC

Choosing a Group

“When considering a sub-field, look for what interests you of course, but bear in mind that many people change their focus, many don’t know exactly what they want to do immediately upon entering grad school, and your picture of the different areas of research may change over time. Ask around among your contemporaries and older students, especially when it comes to particular advisers.” – Joshua Sayre, PhD, Physics, Pittsburgh
“If you know that you’re interested in an academic career that is more teaching oriented or research oriented, ask about teaching or grant writing opportunities, respectively. I know plenty of fellow students who didn’t start asking about teaching opportunities their 4th or 5th year of their program, and often by then it was too late. If you know that finding funding will be a big part of your future, joining a group where the students take an active part in writing grants and grant renewals is invaluable experience.” -  Lauren Jarocha, Chemistry, UNC
“For choosing groups, I attended group and subgroup meetings, met with faculty to discuss research and ideas, and read several recent publications from each group of interest.  What I did not do (and wish I had) was talk with the graduate students, see how they and the group operated.  For example, I am very motivated and curious to try new ideas, so in my current research group my PI plays a minimal role in my life.  The most important aspect is how well one’s working style fits with the group mentality, followed by research interest.  There’s a ton of cool, exciting research going on, but finding a group with fun, happy, motivated people will make or break the PhD experience.” – Adam Weingarten, Chemistry, Northwestern
“I went into [Condensed Matter Theory] and not [X] because (1) In the summer of my first year I had no research, and I came close to having no income because of this. I realized I needed someone who could promise me research/funding and real advising. The [X] group was pretty filled up (and there were some politics), so it was impossible to get more than this. (2) I thought the professors in CMT treated me with more respect then the [X] profs I talked to.” - John Doe, Physics
“I believe that choosing which grad schools to apply to should primarily be about the research, so this question is more for after you’ve (hopefully) been accepted to a couple schools.  If you are going into theoretical physics, and if you don’t have some sort of fellowship from them or an outside agency, ask them how much their theory students [teach].  Do they have to TA every semester for their funding?  Do they at least get summers off?  Or do they only have to TA for the first one or two years?  This shouldn’t be the primary factor in deciding where to go – research always is – but it’s not something that should be ignored completely.  Teaching is usually somewhat rewarding in my experience, but it adds absolutely no benefit to your career if you are focused on a professorship at a research university.  Every hour you spend steaching is an hour someone else is researching and you aren’t.  And 10-20 hours a week of teaching adds up.” – Michael Saelim, Physics, Cornell
Share

–by T.I. Meyer, Head of Strategic Planning & Communication

I was at a seminar recently, and they posed the following question: Suppose you are 2 metres away from a solid wooden fence with a small hole cut out in it. As you watch the hole, you see the head of a dog go by, and then you see the tail of a dog go by. You see this happen, say, three times in a row. What do you conclude?

The conclusions are less interesting, I think, than, the space of all possible conclusions. Intuitively, as human beings, we would think there is a RELATIONSHIP between the head and the tail of a dog. What are the possible types of relationships?

  • Causation. We might think that the head of a dog CAUSES the tail of a dog. This is perhaps the most powerful and most natural pattern of our human brain. We are always looking for cause and effect. But, depending on how much quantum mechanics you shoot into your veins, is causation really real or is it just a human construct? Consider how sure you are, as an individual, about all the causes and effects in your life and your surroundings. Are you sure about cause and effect?
  • Coincidence. It could be that the two events (sighting of dog head and sighting of dog tail) simply were because of random chance. If we watched longer, we might see something else. How often do we mistake coincidence with cause and effect?
  • Correlation. It could be that the head of a dog is correlated with the tail of a dog, in the sense that they “arise together” on a common but not causal basis. Correlation is a powerful concept in statistics, where it suggests that two events happen often together but not because one necessarily causes the other.
  • Parts of a Whole. This is the “true” answer for the dog sighting; a dog head and a dog tail are parts of a whole that we see through the fence. Thus, there is no real cause and no correlation and no coincidence; we are simply observing two instances of some common underlying connection – that a living dog’s body has both a head and a tail.

In physics, we rely on this set of approaches. We worry about whether we have established causality, correlation, coincidence, or parts of a whole. When we measure a frequently occurring set of “particle debris” after a collision of two particles, we wonder if the collision “caused” the debris or if the debris actually reflects “part of a whole.” We apply rigorous statistical cross-checks and tests to assure ourselves that we have “watched long enough” to be confident (in a quantitative fashion) about our interpretation.

It is in this same realm that we often run into the confusion of pseudo-science that tries to pin everything on cause and effect or something else entirely. Pseudo-science almost always boils down to someone claiming cause and effect, where what they might be really be observing is simply an unexamined or unexplained relationship between two events or two occurrences. Part of the job of science is to provide a systematic methodology to tease out what these relationships are. In fact, science is aimed at mastering these observed relationships so that we can make “predictions.”

But why do humans love cause and effect so much? It certainly seems “easy to understand.”

I propose a somewhat silly response, perhaps based on Dawkins or Gould or Pinker. Cause & effect is the most precautionary approach for human beings wandering in the wild trying to survive predators, hunger, and other hazards. For instance, if you see the paw prints of a roaming tiger, the best survival strategy is to assume that a tiger caused those prints and you should get going in the other direction. A scientist might want to stop and consider whether the prints were fresh, whether they fit the characteristics of the tiger you saw yesterday, and so forth. But a human brain focused on survival is optimized for making quick calculations using the cause & effect principle to save its own skin.

So, take a look around you and your world. In how many ways and in how many places do you see that we rely on cause & effect as an explanation because it is convenient?

Moreover, what other categories of relationship do you see? And what experiments would you conduct to help separate out these types of relationships?

Share

This post was written by Brookhaven Lab scientists Shigeki Misawa and Ofer Rind.

Run 13 at the Relativistic Heavy Ion Collider (RHIC) began one month ago today, and the first particles collided in the STAR and PHENIX detectors nearly two weeks ago. As of late this past Saturday evening, preparations are complete and polarized protons are colliding with the machine and detectors operating in “physics mode,” which means gigabytes of data are pouring into the RHIC & ATLAS Computing Facility (RACF) every few seconds.

Today, we store data and provide the computing power for about 2,500 RHIC scientists here at Brookhaven Lab and institutions around the world. Approximately 30 people work at the RACF, which is located about one mile south of RHIC and connected to both the Physics and Information Technology Division buildings on site. There are four main parts to the RACF: computers that crunch the data, online storage containing data ready for further analysis, tape storage containing archived data from collisions past, and the network glue that holds it all together. Computing resources at the RACF are split about equally between the RHIC collaborations and the ATLAS experiment running at the Large Hadron Collider in Europe.

Shigeki Misawa (left) and Ofer Rind at the RHIC & ATLAS Computing Facility (RACF) at Brookhaven Lab

Where Does the Data Come From?

For RHIC, the data comes from heavy ions or polarized protons that smash into each other inside PHENIX and STAR. These detectors catch the subatomic particles that emerge from the collisions to capture information—particle species, trajectories, momenta, etc.—in the form of electrical signals. Most signals aren’t relevant to what physicists are looking for, so only the signals that trip predetermined triggers are recorded. For example, with the main focus for Run 13 being the proton’s “missing” spin, physicists are particularly interested in finding decay electrons from particles called W bosons, because these can be used as probes to quantify spin contributions from a proton’s antiquarks and different “flavors” of quarks.

Computers in the “counting houses” at STAR and PHENIX package the raw data collected from selected electrical signals and send it all to the RACF via dedicated fiber-optic cables. The RACF then archives the data and makes it available to experimenters running analysis jobs on any of our 20,000 computing cores.

Recent Upgrades at the RACF

Polarized protons are far smaller than heavy ions, so they produce considerably less data when they collide, but even still, when we talk about data at the RACF, we’re talking about a lot of data. During Run 12 last year, we began using a new tape library to increase storage capacity by 25 percent for a total of 40 petabytes—the equivalent of 655,360 of the largest iPhones available today. We also more than doubled our ability to archive data for STAR last year (in order to meet the needs of a data acquisition upgrade) so we can now sustain 700 megabytes of incoming data every second for both PHENIX and STAR. Part of this is due to new fiber-optic cables connecting the counting houses to the RACF, which provide both increased data rates and redundancy.

With all this in place, along with those 20,000 processing cores (most computers today have two or four cores), certain operations that used to require six months of computer time now can be completed often in less than one week.

Looking Ahead

If pending budgets allow for the full 15-week run planned, we expect to collect approximately four petabytes of data from this run alone. During the run, we meet formally with liaisons from the PHENIX and STAR collaborations each week to discuss the amount of data expected in the coming weeks and to assess their operational needs. Beyond these meetings, we are in continual communication with our users, as we monitor and improve system functionality, troubleshoot, and provide first-line user support.

We’ll also continue to work with experimenters to evaluate computing trends, plan for future upgrades, and test the latest equipment—all in an effort to minimize bottlenecks that slow the data from getting to users and to get the most bang for the buck.

— Shigeki Misawa – Group Leader, RACF Mass Storage and General Services

— Ofer Rind – Technology Architect, RACF Storage Management

Share

–by T.I. Meyer, TRIUMF’s Head of Strategic Planning & Communication

“So, did the 8 pieces of artwork actually generate any new insights for the physicists about neutrino oscillations,” asked the gentleman in the fifth row of the auditorium. I was on stage with my colleague Professor Ingrid Koenig from Emily Carr University of Art & Design. We were leading a 75 minute session at the Innovations: Intersection of Science & Art conference, curated by Liz Lerman and organized by Wesleyan University in central Connecticut.

The gentleman, chair of Wesleyan’s department of environmental science, repeated his question, “So you said this project was about seeing if you could have art influence physics rather than just the other way around. Well, did it work?”

Damn good question. I looked at Ingrid for a moment and then responded: “Nope.” But then I continued. No, we did not achieve success in using physics-inspired artwork to change the course of particle physics. But yes, in addition to learning that we posed the wrong hypothesis, we did achieve three other outcomes: (1) We constructed and executed one of the first research experiment at the intersection of art and science; (2) We documented a carefully controlled interaction of artists and particle physicists; and (3) We launched an inquiry that now has a national laboratory (TRIUMF) musing about how to exercise its influence in local and national culture for the advancement of society.

What was all this about? We were invited to lead a session at this conference because of the “RAW DATA” project for which TRIUMF and Emily Carr collaborated. For the full story on our “experimental research project,” please see this handsome website. One thing we discussed in the Q&A period (of course!) was the next step in the research. Perhaps rather than focusing on an experiment where the “work” of scientists was transferred to artists (whose “work” in turn was transferred to other artists and then back to scientists), we should construct an experiment where a “practice” or “process” of science (and art) was transferred. For instance, one thing scientists and artists both deal with is uncertainty and ambiguity. It was suggested that there might be something valuable uncovered if we had scientists and artists sharing their approaches to dealing with and communicating uncertainty.

The purpose of the conference was to pull together scientists, artists, and teachers from across North America to compare emerging trends and look for common opportunities for teaching at the intersection of art and science as well as for performing research at the intersection of art and science. In many regards, universities are starting to respond to the teaching opportunity but are less organized in exploiting the research opportunity. For instance, a key thread at the conference was the distinction between “art working for science” and “science working for art” when the real question might be, “What can science and art do together?” Lofty goals, of course, especially when sometimes the first step of bringing the fields together might actually be some “service” for the other side.

Better yet, I was not the only particle physicist there! Sarah M. Demers, an ATLAS physicist from Yale of some fame, participated as well, based on her experience co-teaching a “Physics of Dance” course with famed choreographer Emily Coates. The duo gave a fascinating presentation that started out with an inquiry “How do I move?” or rather “Why can I move?” Starting from the observation that atoms are mostly empty space and gravity ultimately attracts everything, they discussed why we can stand up at all (electrostatic repulsion between the electrons orbiting the atoms of the floor and those orbiting the atoms in my shoe on my foot in my sock). Then the question became, “How can I actually move my body at all if everything is repulsive and forces are balanced?” The answer came next, articulated by the dancer/choreographer who talked about how we use friction to generate a net force on our center of mass and can then use electrical impulses to stimulate chemical reactions in our muscles to push against ourselves and the floor. And then the talk moved to how to present and experience the Higgs field and the Higgs boson…in the form of a dance. WOW.

Throughout the 36 hours of this intensive, multi-dimensional conference (yes, we did “dance movement” exercises between sessions to help reflect and internalize the key points of discussions), I took copious notes and expanded my brain ten-fold.

A few other comments from my notebook.

There are really only two things that humans do: experience or share. We are either experiencing reality or we are sharing some aspect of it via communication (and yes, one can argue that communication does occur within reality!). Doing something is an experience, making a discovery is an experience, listening to music is an experience. And teaching, publishing a scientific paper, or making art for someone else are more in the sharing category. So, there are aspects of science and art that are both in “experience” and the “share” category.

Furthermore, science and art do not actually exist as stand-alone constructs. They only exist in our minds as modalities for thinking. They are tools, or perhaps practices, that assist human beings in “dealing with” or “responding to” the world. From this perspective, they are just some of the several modalities for organizing our thinking about the world, just like mathematics or engineering are also modalities.

During some of the breakout discussions, we sometimes got excited and use the terms art, creativity, and self-expression interchangeably. Unpacking these terms, I think, sheds considerable light on the path forward. Self-expression is just that…the process of expressing one’s self. Creativity is about being generative and often includes powerful threads of synthesis and analysis. Art, however, transcends and includes both of these. Art is meant to be “seen” by others, if I can simplify to just one verb. An artist, when creating a piece of art, is considering some audience, some community, or maybe just one person and taking into account how they might react to or interact with the artwork. It’s like the distinction between having an insight (smoking is why I have poor health) and a breakthrough (I have stopped smoking and haven’t had a cigarette for 6 months). In a strange way, this is parallel to what we do in science. An experiment or theory is just a nice idea, but until I write it up and send it out and have it approved for publication, it is just in my head and doesn’t actually advance science. Granted, scientific publications are perhaps more targeted at scientific peers while art’s discussion and acceptance might be determined by some other audiences beyond just artistic peers. But in a way, art is meant to be out there and wrestled with by people. And so is science.

So, what random musings do YOU have about science & art? Are they different?  Are they the same expression of a similar human yearning or inquiry?  Can they be combined?

Share

Heat: Adventures in the World's Fiery Places (Little Brown, 2013). If you haven't already fallen in love with the groundbreaking science that's taking place at RHIC, this book about all things hot is sure to ignite your passion.

Bill Streever, a biologist and best-selling author of Cold: Adventures in the World’s Frozen Places, has just published his second scientific survey, which takes place at the opposite end of the temperature spectrum. Heat: Adventures in the World’s Fiery Places features flames, firewalking, and notably, a journey into the heart of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory.

I accompanied Streever for a full-day visit in July 2011 with physicist Barbara Jacak of Stony Brook University, then spokesperson of the PHENIX Collaboration at RHIC. The intrepid reporter (who’d already tagged along with woodland firefighters and walked across newly formed, still-hot volcanic lava—among other adventures described in the book) met with RHIC physicists at STAR and PHENIX, descended into the accelerator tunnel, and toured the refrigeration system that keeps RHIC’s magnets supercold. He also interviewed staff at the RHIC/ATLAS Computing Facility—who face the challenge of dissipating unwanted heat while accumulating and processing reams of RHIC data—as well as theorists and even climate scientists, all in a quest for understanding the ultrawarm.

The result is an enormously engaging, entertaining, and informative portrayal of heat in a wide range of settings, including the 7-trillion-degree “perfect” liquid quark-gluon plasma created at RHIC, and physicists’ pursuit of new knowledge about the fundamental forces and interactions of matter. But Streever’s book does more: It presents the compelling story of creating and measuring the world’s hottest temperature within the broader context of the Lab’s history, including its role as an induction center during both World Wars, and the breadth and depth of our current research—from atoms to energy and climate research, and even the Long Island Solar Farm.

“Brookhaven has become an IQ magnet, where smart people congregate to work on things that excite geniuses,” he writes.

Streever’s own passion for science comes across clearly throughout the book. But being at “the top of the thermometer” (the title of his final chapter, dedicated in part to describing RHIC) has its privileges. RHIC’s innermost beam pipes—at the hearts of its detectors, inside which head-on ion collisions create the highest temperature ever measured in a laboratory—have clearly left an impression:

“… I am forever enthralled by Brookhaven’s pipes. At the top of the thermometer, beyond any temperature that I could possibly imagine, those pipes explore conditions near the beginning of the universe … In my day-to-day life, bundled in a thick coat or standing before my woodstove or moving along a snow-covered trail, I find myself thinking of those pipes. And when I think of them, I remember that at the top of the thermometer lies matter with the audacity to behave as though it were absolutely cold, flowing like a perfect liquid…”

There’s more, a wonderful bit more that conveys the pure essence of science. But I don’t want to spoil it. Please read and share this book. The final word is awe.

The book is available for purchase through major online retailers and in stores.

-Karen McNulty Walsh, BNL Media & Communications Office

Share

Theoretical physicist Raju Venugopalan

We sat down with Brookhaven theoretical physicist Raju Venugopalan for a conversation about “color glass condensate” and the structure of visible matter in the universe.

Q. We’ve heard a lot recently about a “new form of matter” possibly seen at the Large Hadron Collider (LHC) in Europe — a state of saturated gluons called “color glass condensate.” Brookhaven Lab, and you in particular, have a long history with this idea. Can you tell me a bit about that history?

A. The idea for the color glass condensate arose to help us understand heavy ion collisions at our own collider here at Brookhaven, the Relativistic Heavy Ion Collider (RHIC)—even before RHIC turned on in 2000, and long before the LHC was built. These machines are designed to look at the most fundamental constituents of matter and the forces through which they interact—the same kinds of studies that a century ago led to huge advances in our understanding of electrons and magnetism. Only now instead of studying the behavior of the electrons that surround atomic nuclei, we are probing the subatomic particles that make up the nuclei themselves, and studying how they interact via nature’s strongest force to “give shape” to the universe today.

We do that by colliding nuclei at very high energies to recreate the conditions of the early universe so we can study these particles and their interactions under the most extreme conditions. But when you collide two nuclei and produce matter at RHIC, and also at the LHC, you have to think about the matter that makes up the nuclei you are colliding. What is the structure of nuclei before they collide?

We all know the nuclei are made of protons and neutrons, and those are each made of quarks and gluons. There were hints in data from the HERA collider in Germany and other experiments that the number of gluons increases dramatically as you accelerate particles to high energy. Nuclear physics theorists predicted that the ions accelerated to near the speed of light at RHIC (and later at LHC) would reach an upper limit of gluon concentration—a state of gluon saturation we call color glass condensate.* The collision of these super-dense gluon force fields is what produces the matter at RHIC, so learning more about this state would help us understand how the matter is created in the collisions. The theory we developed to describe the color glass condensate also allowed us to make calculations and predictions we could test with experiments. (more…)

Share

Higgs Seminar 2012

Saturday, June 30th, 2012

This is the link to the liveblog

This year sees the International Conference on High Energy Physics, or ICHEP. Hundreds of physicists will flock to Melbourne, Australia, to get the latest news on physics results from around the world. This includes the latest searches for the Higgs boson, the final piece of the Standard Model. CERN will hold a seminar where ATLAS and CMS will present their results. I’ll be liveblogging the event, so join me on the day!

Information about the webcast

The webcast for the CERN seminar is available at http://cern.ch/webcast. If you have a CERN login you can also use http://cern.ch/webcast/cern_users/

Wednesday 4th July 2012 09:00.
(Other timezones: 00:00 PDT / 03:00 EDT / 07:00 GMT / 08:00 BST /09:00 CET / 17:00 VIC)

Meeting link: https://indico.cern.ch/conferenceDisplay.py?confId=197461
Webcast link: http://webcast.cern.ch/
Follow on twitter: @aidanatcern @sethzenz

Share

Art and Science: Both or Neither

Wednesday, June 13th, 2012

 

I don’t get it. I guess we just have different brains than them.” – two young science students, regarding a piece of art.

It’s a funny feeling, being an individual with a predominantly artistic mind working in a place dominated by science. I’m not saying I don’t have love for the sciences, but if we’re talking in terms of how my thought process lazily unfurls itself when faced with a problem, I’m definitely more of an artist than a scientist. The very fact that I have used the terms “scientist” and “artist” in a way that does nothing but reinforce the eternal dichotomy that exists between the two groups indicates that the problem is so widespread, indeed, that even the person trying to formulate an argument calling for a cessation of the “war” that exists between the two groups cannot avoid thinking of the two as incontrovertibly disparate.

 

A page from Leonardo da Vinci's famous notebooks. He remains one of the finest examples of an individual expanding his mind to take in both science and art.

 

The quote at the top is a real thing I heard. Aside from the disquieting use of “we” and “them,” the most troubling thing about the above assertion is the outright dismissal of the piece of art in question. The finality and hopelessness of the “Different Brain” argument does not seem ridiculous outright because it has been propagated by you (yes, you), me, and everyone else ever in the history of time when we don’t want to take the time to learn something new. Artists and scientists are two particular groups that use the Different Brain argument on one another all too often. In order to see the truly farcical nature that underlies the argument, picture two groups of early humans. One group has fire. The other group does not. One person from the fireless group is tasked with inventing fire for the group. The person in charge of making fire claps his hands; no fire is produced. He gives up, citing that he and his counterpart in the other group must have different brains. His group dies out because of their lack of fire.

I hope you followed the cautionary tale of our dismissive early human closely, for he is the rock I will build this post on. The reason one group died and the other thrived is quite obvious. It is not because they simply lacked fire; it is that they lacked the ability to extend their minds beyond their current knowledge in order to solve a problem. Moreover, they not only lacked the ability, they lacked the drive—a troubling trend that is becoming more pronounced as the misguided “war” between artists and scientists rages on, insofar as an intellectual war can rage.

If you were to ask a scientist what he or she would do when posed with a problem, the answer will invariably be something along the lines of, “I would wrestle it to the ground with my considerable intellect until it yields its secrets.” During my time at TRIUMF, I have noticed a deep, well-deserved pride in every scientist in their ability to solve problems. Therefore, it is truly a sad state of affairs when our scientists look at something that puzzles them and then look away. To me, that’s no scientist. That is someone who has grown too complacent, too comfortable, in the vastness of their knowledge that they begin to shy away from things that challenge them in a way they aren’t used to. What’s more is that no one (artists or scientists) sees this as a defeat. As soon as you’ve said, “Oh well, different brain,” you’ve lost.

Any person familiar with rhetoric will tell you that in order to build a strong argument and persuade people, you have to be honest. Be sneaky and fail to address something potentially damning and your credibility is shot and the argument is void. Since it works so well in politics (snark), I figure I should give is a shot here. The problem of the Different Brain argument does not just lay with the scientists; if I’ve excoriated them, it’s out of fear that soon, a generation of scientists will stop growing and thinking. The artists are guilty of invoking the Different Brain argument as well whenever faced with math, science, or anything, really, that they didn’t want to do. The only difference between the two is that I heard a scientist use the different brain argument in a place of science, in a place where knowledge is the point.

Different Brain is a spurious concept, which is obvious to anyone with more grey matter than pride, but it’s not just wrong because I say it is. It’s wrong because look around you.

I was standing in the middle of Whistler Village with my fiancé, when we spied a poster for a band called Art vs. Science (you’re doing it wrong, guys!). She immediately said, “Science would win.” No question. No pondering. No soul-searching. Gut reaction, like flinching from a feigned punch. She’s a statistics major and biology minor, so she has a “science” brain and her response didn’t necessarily surprise me. I was a little sad, though, because she wasn’t seeing the world like I was seeing it. We debated the problem for a few minutes until I told her to look around.

The shape of the buildings: Architecture

The pleasant configuration of the shrubbery: Horticulture

The signage on the buildings and lampposts: Design

The food in the bag in my hand: Cooking

The phone in her hand: Technology

I asked her to picture a world where science had “won”. What’s architecture without art? A shape. What’s horticulture without art? A forest. Design? A grid. Cooking? Paste. Technology? Sufficient. It’s a tough world to imagine. Look at the next thing you see and try to separate the science and art of it and imagine what it would look like, whether it would function at all. It’s absolutely dystopian.

It was then that my argument became clear: science and art are inextricable. There can be no dismissing, no deigning, no sighing in the face of it. There can only be and has only ever been unity between the two. The problem is that the two warring sides are too preoccupied with the connotations the words “art” and “science” seem to realize it’s not a question of either/or, but both/neither.

I was worried about whether this war of the different brains would always rage between the two sides, but three things lent me hope and I hope they will lend you hope, too.

1.)  These two quotes from Bertholt Brecht (20th century German playwright and poet, whose work I don’t much care for):

“Art and science work in quite different ways: agreed. But, bad as it may sound, I have to admit that I cannot get along as an artist without the use of one or two sciences. … In my view, the great and complicated things that go on in the world cannot be adequately recognized by people who do not use every possible aid to understanding.”

and

“Art and science coincide insofar as both aim to improve the lives of men and women.”

2.) I was feeling discouraged about my argument for this post and had taken to turning it over in my mind even when I was otherwise occupied, but when I heard Rolf Heuer, the Director-General of CERN, say, only a handful of feet from my face, “Science and Art belong together,” I felt a renewed sense of vigor course through my brain, spurring me on. If one of the foremost scientific experts of our age can see it, I wonder why many of us turn away from it, when it is clearly there.

3.) In case one thinks that I’ve gone too soft on the artists, imagine a world without science. Think of our society as a book of fiction or a painting. Unequivocal works of art. Yet, what holds the book together? How were the pages manufactured? How were the chemical composition of the paints devised? Science.

Keeping these points in mind, I am calling for the abolition of the concepts underpinning the Different Brain argument. The war between art and science is one of mutually assured destruction and will turn us into a lopsided simulacrum of a culture if we are not careful.

–Written by Jordan Pitcher (Communications Assistant)

Share

The biggest news at CIPANP 2012 for particle physicists seems to be coming from the “low” energy frontier, at energies in the ballpark of 10GeV and lower. This may come as a surprise to some people, after all we’ve had experiments working at these energies for a few decades now, and there’s a tendency to think that higher energies mean more potential for discovery. The lower energy experiments have a great advantage over the giants at LHC and Tevatron, and this is richer collection of analyses.

There’s a big difference between discovering a new phenomenon and discovering new physics, which is something that most people (including physicists!) don’t appreciate enough. Whenever a claim of new physics is made we need to look at the wider implications of the idea. For example, let’s say that we see the decay of a \(\tau\) lepton to an proton and a \(\pi^0\) meson. The Feynman diagram would look something like this:

tau lepton decay to a proton and a neutral pion, mediated by a leptoquark

tau lepton decay to a proton and a neutral pion, mediated by a leptoquark

The “X” particle is a leptoquark, and it turns leptons into quarks and vice versa. Now for this decay to happen at an observable rate we need something like this leptoquark to exist. There is no Standard Model process for \(\tau\to p\pi^0\) since it violates baryon number (a process which is only allowed under very special conditions). So suppose someone claims to see this decay, does this mean that they’ve discovered new physics? The answer is a resounding “No”, because if they make a claim of new physics they need to look elsewhere for similar effects. For example, if the leptoquark existed the proton could decay with this process:

proton decay, mediated by a leptoquark

proton decay to an electron and neutral pion, mediated by a leptoquark

We have very stringent tests on the lifetime of the proton, and the lower limits are currently about 20 orders of magnitude longer than the age the universe. Just take a second to appreciate the size of that limit on the lifetime. The proton lasts for at least 20 orders of magnitude longer than the age of the universe itself. So if someone is going to claim that they have proven the leptoquark exists we need to check that what they have seen is consistent with the proton lifetime measurements. A claim of new physics is stronger than a claim of a new phenomena, because it must be consistent with all the current data, not just the part we’re working.

How does all this relate to CIPANP 2012 and the low energy experiments? Well it turns out that there are a handful of large disagreements in this regime that all tend to involve the same particles. The \(B\) meson can decay to several lighter particles and the BaBar experiment has seen the decays to the \(\tau\) lepton are higher than they should be. The disagreement is more than \(3\sigma\) disagreement with the Standard Model predictions for \(B\to D^{(*)}\tau\nu\), which is interesting because it involves the heaviest quarks in bound states, and the heaviest lepton. It suggests that if there is a new particle or process, that it favors coupling to heavy particles.

Standard model decays of the B mesons to τν, Dτν, and D*τν final states

Standard model decays of the B mesons to τν, Dτν, and D*τν final states

In another area of \(B\) physics we find that the branching fraction \(\mathcal{B}(B\to\tau\nu)\) is about twice as large as we expect from the Standard Model. You can see the disagreement in the following plot, which compares two measurements (\(\mathcal{B}(B\to\tau\nu)\) and \(\sin 2\beta\)) to what we expect given everything else. The distance between the data point and the most favored region (center of the colored region) is very large, about \(3\sigma\) in total!

The disagreement between B→τν, sin2β and the rest of the unitary triangle measurements (CKMFitter)

The disagreement between B→τν, sin2β and the rest of the unitary triangle measurements (CKMFitter)

Theorists love to combine these measurements using colorful diagrams, and the best known example is the unitary triangle. If the CKM mechanism describes all the quark mixing processes then all of the measurements should agree, and they should converge on a single apex of the triangle (at the angle labeled \(\alpha\)). Each colored band corresponds to a different kind of process, and if you look closely you can see some small disagreements between the various measurements:

The unitary triangle after Moriond 2012 (CKMFitter)

The unitary triangle after Moriond 2012 (CKMFitter)

The blue \(\sin 2\beta\) measurement is pulling the apex down slightly, and green \(|V_{ub}|\) measurement is pulling it in the other direction. This tension shows some interesting properties when we try to investigate it further. If we remove the \(\sin 2\beta\) measurement and then work out what we expect based on the other measurements, we find that the new “derived” value of \(\sin 2\beta\) is far off what is actually measured. The channel used for analysis of \(\sin 2\beta\) is often called the golden channel, and it has been the main focus of both BaBar and Belle experiments since their creation. The results for \(\sin2\beta\) are some of the best in the world and they have been checked and rechecked, so maybe the problem is not associated with \(\sin 2\beta\).

Moving our attention to \(|V_{ub}|\) the theorists at CKMFitter decided to split up the contributions based on the semileptonic inclusive and exclusive decays, and from \(\mathcal{B}(B\to\tau\nu)\). When this happens we find that the biggest disagreement comes from \(\mathcal{B}(B\to\tau\nu)\) compared to the rest. The uncertainties get smaller when \(\mathcal{B}(B\to\tau\nu)\) is combined with the \(B\) mixing parameter, \(\Delta m_d\), which is well understood in terms of top quark interactions, but these results still disagree with everything else!:

Disagreement between B→τν, Δmd and the rest of the unitary triangle measurments (CKMFitter)

Disagreement between B→τν, Δmd and the rest of the unitary triangle measurments (CKMFitter)

What this is seeming to tell us is that there could be a new process that affects \(B\) meson interactions, enhancing decays with \(\tau\) leptons in the final state. If this is the case then we need to look at other processes that could be affected by these kinds of processes. The most obvious signal to look for at the LHC is something like production of \(b\) quarks and \(\tau\) leptons. Third generation leptoquarks would be a good candidate, as long as they cannot mediate proton decay in any way. Searching for a new particle of a new effect is the job of the experimentalist, but creating a model that accommodates the discoveries we make is the job of a theorist.

That, in a nutshell is the difference between discovering a new phenomenon and discovering new physics. Anyone can find a bump in a spectrum, or even discover a new particle, but forming a consistent model of new physics takes a long time and a lot of input from all different kinds of experiments. The latest news from BaBar, Belle, CLEO and LHCb are giving us hints that there is something new lurking in the data. I can’t wait to see wait to see what our theorist colleagues do with these measurements. If they can create a model which explains anomalously high branching fractions \(\mathcal{B}(B\to\tau\nu)\), \(\mathcal{B}(B\to D\tau\nu)\), and \(\mathcal{B}(B\to D^*\tau\nu)\), which tells us where else to look then we’re in for an exciting year at LHC. We could see something more exciting than the Higgs in our data!

(CKMFitter images kindly provided by the CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], updated results and plots available at: http://ckmfitter.in2p3.fr)

Share