• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Posts Tagged ‘PS’

A beam of your own

Thursday, January 16th, 2014

As part of its 60th anniversary celebration and to help keep us young at heart, CERN has launched a special competition for students called: Beam line for schools.

CERN is inviting students aged 16 and upward from anywhere in the world to submit a proposal to do an experiment with a beam of particles from the Proton Synchrotron beam line. Each team can be composed of up to 30 students with at least one adult supervisor. This summer, up to nine students of the selected team will be invited to CERN to run the team’s experiment. Travelling and living expenses for the selected group will be covered by CERN.

PSA view of the Proton Synchrotron beam line.

The proposals will be pre-selected by a group of CERN scientists, and will then be reviewed by the same committee that validates all proposals for experiments at the laboratory’s Super Proton Synchrotron and Proton Synchrotron accelerators.

So what could you be doing? Essentially, you can investigate how beams of particles interact with matter. For example, you could study what happens when beams containing different types of particles hit targets made of various materials. The proposals will be judged on creativity, motivation, feasibility and adherence to the scientific method.

To help you understand what can be done, we have put together a short presentation that explains the basics about particles and beams. These short talks are available in English, French, Italian, Spanish and German and are part of a YouTube playlist that includes recordings of Google hangouts in English, French, Italian, Spanish and German, in which CERN scientists answer questions.

Here is your chance to come to run your own experiment at CERN. This will last about a week and take place in July, August or September. CERN physicists will be helping you to refine your idea before and during your stay at CERN.

Interested? Then you can stay up-to-date via the CERN website, #bl4s on Twitter, Facebook, Google+ or YouTube.

Don’t hesitate and fill out the registration form before 31 January 2014. All you need to do at this point is send us the name of the school and of the participants as well as a tweet-of-intent stating why you think you should win this competition. You will still have until 31 March to prepare your full project, including a 1-minute video giving the highlights. Here is your chance!

Pauline Gagnon

To be alerted of new postings, follow me on Twitter: @GagnonPauline
 or sign-up on this mailing list to receive and e-mail notification.

 

Share

Un faisceau juste pour vous

Thursday, January 16th, 2014

Dans le cadre de son 60ème anniversaire et pour nous aider à rester jeunes d’esprit, le CERN a lancé une compétition spéciale pour les étudiant-e-s appelée : Un faisceau  pour les écoles.

Le CERN invite donc les étudiant-e-s de 16 ans et plus de n’importe quel pays à soumettre une proposition pour venir effectuer une expérience avec un faisceau de particules du synchrotron à protons (PS). Chaque équipe peut compter jusqu’à 30 étudiant-e-s avec au moins un-e adulte responsable. Cet été, tout au plus neuf étudiant-e-s de l’équipe choisie seront invité-e-s au CERN pour réaliser l’expérience pour l’équipe. Les frais de déplacement et d’hébergement du groupe seront pris en charge par le CERN.

PSVue de l’accélérateur du synchrotron à protons ou PS.

Les propositions seront pré-sélectionnées par un groupe de scientifiques du CERN puis passées en revue par le même comité qui valide toutes les demandes d’expériences des laboratoires opérant au synchrotron à protons et au supersynchrotron à protons.

Alors que pourriez-vous faire? Essentiellement, examiner comment les faisceaux de particules interagissent avec la matière. Vous pourriez par exemple étudier comment des faisceaux contenant différentes particules interagissent avec des cibles de matériaux divers. On jugera les propositions sur leur créativité, leur motivation, leur faisabilité et l’adhésion à la méthode scientifique.

Pour vous aider à comprendre ce qui peut être fait, nous avons préparé de courtes présentations expliquant l’essentiel sur les particules et les faisceaux. Ces présentations sont disponibles en anglais, français, italien, espagnol et allemand. Vous les trouverez sur une liste de sélections sur YouTube qui comprend aussi les enregistrements de discussions sur Google en cinq langues où des scientifiques du CERN répondent à différentes questions sur le projet.

Courrez donc la chance de venir réaliser votre propre expérience au CERN. Le séjour durera environ une semaine et aura lieu en juillet, août ou septembre. Des physicien-ne-s vous aideront à raffiner vos idées avant et pendant votre stage au CERN.

Intéressé-e-s? Vous pouvez rester à jour via le site Web du CERN ou en suivant #bl4s sur Twitter, Facebook, Google+ ou YouTube.

N’hésitez pas et inscrivez-vous avant le 31 janvier 2014. Tout ce que vous avez faire à pour l’instant est de nous envoyer le nom de l’école et des participant-e-s, ainsi qu’un tweet expliquant pourquoi vous pensez que vous devriez gagner cette compétition. Vous aurez encore jusqu’au 31 mars pour compléter votre application, y compris une vidéo d’une minute soulignant l’essentiel du projet. Une occasion à ne pas manquer!

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

Share

A whole Universe to be discovered

Wednesday, January 15th, 2014

The past two years have been rather exceptional for CERN: first in 2012, the CMS and ATLAS experiments discovered the Higgs boson, confirming the mechanism elaborated 48 years earlier by Robert Brout, François Englert and Peter Higgs. Then in 2013, Englert and Higgs received the Nobel Prize for Physics for their theory.

2014 is also going to be special year since CERN is going to turn 60. But beyond this anniversary, CERN is preparing the Large Hadron Collider (LHC) to explore new territories.

With the Higgs boson discovery, we have completed the Standard Model, the current theory that explains what makes all visible matter around us. But that is just a mere 5% of the total content of the Universe. The existence of dark matter tells us our current model is incomplete. So far, the various analyses of the data taken at 8 TeV has not yet revealed traces of dark matter or any new particles. To push all our searches further and faster, we need to increase the reach of the LHC by going to higher energies.

This is why since February last year all accelerators and experiments at CERN began a long shutdown for maintenance and consolidation. This will continue in 2014 for the LHC but many accelerators of CERN complex will be coming back to life starting this summer.

H-bottle

The starting point of the chain of accelerators is a simple hydrogen bottle. The electrons are stripped from the hydrogen atoms using an electric field to leave single protons. These are then accelerated in a small linear accelerator (LINAC 2 at the bottom centre of the diagram below). The Low Energy Ion Ring (LEIR) plays a similar role but with heavy ions.

Accelerators

The protons get an extra kick in the Booster before being injected into what is CERN’s oldest circular accelerator still in operation, the Proton Synchrotron (PS). Then the protons head for the Super Proton Synchrotron (SPS), where they reach 450 GeV in energy (that is 450 billion electronvolts). This is the final stage before injection into the LHC where the energy will get nearly thirty times larger, namely 13 TeV.

The beams from the accelerator chain are also delivered to various other experimental areas, such as ISOLDE and n-TOF where a huge number of experiments involving nuclei are conducted. Other protons hit a target to produce antiprotons for the Antiproton Decelerator (AD), a facility dedicated to antimatter studies. These experiments will all resume their activities in 2014.

LS1-schedule-2014

All consolidation work for the LHC and its experiments will take place in parallel. ATLAS and CMS plan to complete all repairs and upgrades to their detector by November, ALICE at the beginning of December and LHCb in early January 2015.

Meanwhile, all physicists not involved with hardware are either completing the many ongoing analyses of all data taken up to 2013, preparing new simulations at higher energies, improving the data reconstruction algorithms or designing the new trigger selection criteria. Everybody is preparing to meet the challenge of dealing with more data at higher energy. All in the hope that we might be rewarded once more with new discoveries since there is still a whole new world to explore out there.

Pauline Gagnon

To be alerted of new postings, follow me on Twitter: @GagnonPauline
 or sign-up on this mailing list to receive and e-mail notification.

 

Share

Tout un Univers à découvrir

Wednesday, January 15th, 2014

Les deux dernières années ont été plutôt exceptionnelles pour le CERN. En 2012, les expériences CMS et ATLAS  ont découvert le boson de Higgs, confirmant le mécanisme élaboré 48 ans auparavant par Robert Brout, François Englert et Peter Higgs. Et en 2013, Englert et Higgs se sont vus décerner le Prix Nobel de physique pour leurs travaux.

2014 sera également une année spéciale, puisque le CERN célébrera ses 60 ans. Mais au-delà de son anniversaire, cette année le CERN prépare le Grand collisionneur de hadrons (LHC) à explorer de nouveaux territoires.

Avec la découverte du boson de Higgs, nous avons complété le Modèle Standard, la théorie actuelle qui explique de quoi toute la matière visible est faite. Mais ce type de matière ne compte que pour 5 % du contenu total de l’Univers. L’existence de matière sombre nous prouve que le modèle actuel est incomplet. Jusqu’ici, l’analyse des données prises à 8 TeV ne révèle pas pour l’instant de traces de cette matière sombre. Pour pousser nos recherches plus loin et plus vite, nous devons augmenter la portée du LHC en allant à plus haute énergie.

C’est pourquoi depuis février 2013 tous les accélérateurs et expériences du CERN sont à l’arrêt afin d’effectuer des travaux de maintenance et de consolidation. Ceci se poursuivra en 2014 pour le LHC, mais plusieurs accélérateurs du complexe du CERN reprendront du service dès cet été.

H-bottle

Le point de départ de la chaîne d’accélérateurs est une simple bouteille d’hydrogène. Les électrons sont arrachés aux atomes d’hydrogène par un champ électrique pour ne laisser que les protons. Ceux-ci sont ensuite accélérés dans un petit accélérateur linéaire (LINAC 2 en bas, au centre du diagramme ci-dessous). L’anneau d’ions de basse énergie (LEIR) joue le même rôle, mais avec des ions lourds.

Accelerators

Les protons obtiennent une poussée supplémentaire dans le Booster avant d’être injectés dans le plus vieil accélérateur du CERN encore en service, le synchrotron à protons (PS). Puis les protons sont dirigés vers le supersynchrotron à protons (SPS) où ils atteignent une énergie de 450 GeV (soit 450 milliards d’électronvolts). C’est l’étape finale avant l’injection dans le LHC où des énergies près de trente fois plus grandes seront atteintes en 2015, soit 13 TeV.

Plans-2014-fr
Les faisceaux issus de la chaîne d’accélérateur alimentent aussi d’autres zones expérimentales comme ISOLDE et n-TOF où un très grand nombre d’expériences nucléaires prennent place. D’autres protons sont dirigés vers une cible pour produire des antiprotons pour le Décélérateur d’Antiprotons (AD), un laboratoire consacré à l’étude de l’antimatière. Ces expériences reprendront toutes leurs activités en 2014.
Tous les travaux de consolidation du LHC et de ses expériences s’effectuent en parallèle. ATLAS et CMS prévoient d’achever leurs travaux sur les détecteurs avant novembre. ALICE sera prêt début décembre et LHCb début janvier 2015.

Dans le même temps, tous les physicien-ne-s qui ne sont pas impliqué-e-s dans ces travaux finalisent les analyses des données prises jusqu’en 2013, préparent de nouvelles simulations à plus haute énergie, améliorent les algorithmes de reconstruction des données ou rendent les critères de sélection du système de prise de données plus performant. Tout le monde doit relever le défi d’être prêt à traiter plus de données récoltées à plus haute énergie. Tout ça dans l’espoir que nous serons peut-être récompensé-e-s encore une fois par de nouvelles découvertes puisqu’il reste encore tout un monde à découvrir.

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

 

Share