• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Richard
  • Ruiz
  • Univ. of Pittsburgh
  • U.S.A.

Latest Posts

  • Laura
  • Gladstone
  • University of Wisconsin, Madison
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Michael
  • DuVernois
  • Wisconsin IceCube Particle Astrophysics Center
  • USA

Latest Posts

  • Emily
  • Thompson
  • USLHC
  • Switzerland

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘science’

For the antepenultimate[1] essay in this series, I will tackle the thorny issue of the relation between science and philosophy. Philosophy can be made as wide as you like to include anything concerned with knowledge. In that regard, science could be considered a subset of philosophy. It is even claimed that science arose out of philosophy, but that is an over simplification. Science owes at least as much to alchemy as to Aristotle. After all, both Isaac Newton (1642 – 1727) and Robert Boyle[2] (1627 – 1691) were alchemists and the philosophers, including Francis Bacon, vehemently opposed Galileo. Here, I wish to restrict philosophy to what might be call western philosophy—the tradition started with the ancient Greeks and continued ever since in monasteries and the hallowed halls of academia.

Let us start this discussion with Thomas Kuhn (1922 – 1996). He observed that Aristotelian physics and Newtonian physics did not just differ in degree, but were entirely different beasts. He, then, introduced the idea of paradigms to denote such changes of perspective. However, Kuhn misidentified the fault line. It was not between Aristotelian physics and Newtonian physics, but rather between western philosophy and science. Indeed, I would say that science (along with its sister discipline, engineering) is demarcated by a common definition of what knowledge is (see below). In science, classical and quantum mechanics are very different, yet they share a common paradigm for the nature of knowledge and, hence, we can compare the two from common ground.

Bertrand Russell (1872 –1970) in his A History of Western Philosophy makes a point similar to Kuhn’s. Russell claims that from the ancient Greeks up to the renaissance, philosophers would have been able to understand and discourse with each other. Plato (424 BCE – 348 BCE) and Machiavelli (1469 –1527) would have been able to discuss, if brought together. Similarly with Thomas Aquinas (1225 – 1274) and Martin Luther (1483 – 1546), if Aquinas refrained from having Luther burnt at the stake.  They shared a common paradigm, if not a common view. But with the advent of science, that changes. Neither Aristotle nor Aquinas would have understood Newton. The paradigm had shifted. This shift from philosophy to science is the best and, perhaps, the only real example of a paradigm shift in Kuhn’s original meaning.  Like Kuhn, Russell misidentified the fault line. It was not between early and late western philosophy, but between philosophy and science. C.P. Snow (1905 – 1980) in his 1959 lecture, The two Cultures, identifies a similar fault line but between science and the humanities more generally.

So what are these two paradigms? Philosophy is concerned with using rational arguments[3] to understand the nature of reality. Science turns that on its head and defines rational arguments through observation. A rotational argument is one that helps build models with increased predictive power. To doubt the Euclidian geometry of physical space-time or to suggest twins could age at different rates were at one time considered irrational ideas, beyond the pale. But now they are accepted due to observation-based modeling.  Philosophy tends to define knowledge as that which is true and known to be true for good reason (with debate over what good reason is). Science defines knowledge in terms of observation and observationally constrained models with no explicit mention of the metaphysics concept of truth. Science is concerned with serviceable, rather than certain knowledge.

Once one realizes science and philosophy are distinct paradigms, a lot becomes clear. For example, why philosophers have had so much trouble coming to grips with what science is. Scientific induction as proposed by Francis Bacon (1561 – 1626) does not exist. David Hume (1711 – 1776) started the philosophy of science down the dead end street to logical positivism. Immanuel Kant (1724 – 1804) thought Euclidean geometry was synthetic a priori information, and Karl Popper (1902 – 1994) introduced falsification, which is now largely dismissed by philosophers. Even today, the philosophic community as a whole does not understand what the scientific method is and tends toward the idea that it does not exist at all. All attempts, by either scientist or philosophers, to fit the square peg of science into the round hole of western philosophy have failed and will probably continue to do so into the indefinite future. Eastern philosophy is even more distant.

The different paradigms also provide the explanation of the misunderstanding between science and philosophy. Alfred Whitehead (1861 – 1947) claimed that all of modern philosophy is but footnotes to Plato. On the other hand, Carl Sagan (1934 – 1996) claims Plato and his followers delayed the advance of knowledge by two millennia. The two statements are not in contradiction if you have a negative conception of philosophy. And indeed, many scientists do have a negative conception of philosophy; a short list includes Richard Feynman (1918 – 1988), Ernest Rutherford (1871 – 1937), Steven Weinberg (b. 1933), Stephen Hawking (b. 1962), and Lawrence Krauss (b. 1954).  Feynman is quoted as saying: Philosophy of science is about as useful to scientists as ornithology is to birds. To a large extent, Feynman is correct. The philosophy of science has had little or no effect on the actual practice of science. It has, however, had a large impact on the scientist’s self-image of what they do. Newton was influenced by Francis Bacon, Darwin by Hume, and just try suggesting to a room full of physicists that science is not based on falsification[4].  Even this essay is built around Kuhn’s concept of a paradigm (but most of Kuhn’s other ideas on science are, to put it bluntly, wrong).

This series of essays has been devoted to defining the scientific paradigm for what knowledge is.  The conclusion I have reached, as noted above, is that western philosophy and science are based on different paradigms for the nature of knowledge. But are they competing or complementary paradigms? My take is that the two paradigms are incompatible as well as incommensurate. Knowledge cannot be simultaneously defined by what is true in the metaphysical sense, and by model building.

To receive a notice of future posts follow me on Twitter: @musquod.


[1] That is N2LP in the compact notation of effective field theorists.

[2] The son of the Earl of Cork and the father of modern chemistry.

[3] This is an oversimplification but sufficient for our purposes.

[4] Although I am a theorist, I did that experiment. Not pretty.

Share

Art and Science: Both or Neither

Wednesday, June 13th, 2012

 

I don’t get it. I guess we just have different brains than them.” – two young science students, regarding a piece of art.

It’s a funny feeling, being an individual with a predominantly artistic mind working in a place dominated by science. I’m not saying I don’t have love for the sciences, but if we’re talking in terms of how my thought process lazily unfurls itself when faced with a problem, I’m definitely more of an artist than a scientist. The very fact that I have used the terms “scientist” and “artist” in a way that does nothing but reinforce the eternal dichotomy that exists between the two groups indicates that the problem is so widespread, indeed, that even the person trying to formulate an argument calling for a cessation of the “war” that exists between the two groups cannot avoid thinking of the two as incontrovertibly disparate.

 

A page from Leonardo da Vinci's famous notebooks. He remains one of the finest examples of an individual expanding his mind to take in both science and art.

 

The quote at the top is a real thing I heard. Aside from the disquieting use of “we” and “them,” the most troubling thing about the above assertion is the outright dismissal of the piece of art in question. The finality and hopelessness of the “Different Brain” argument does not seem ridiculous outright because it has been propagated by you (yes, you), me, and everyone else ever in the history of time when we don’t want to take the time to learn something new. Artists and scientists are two particular groups that use the Different Brain argument on one another all too often. In order to see the truly farcical nature that underlies the argument, picture two groups of early humans. One group has fire. The other group does not. One person from the fireless group is tasked with inventing fire for the group. The person in charge of making fire claps his hands; no fire is produced. He gives up, citing that he and his counterpart in the other group must have different brains. His group dies out because of their lack of fire.

I hope you followed the cautionary tale of our dismissive early human closely, for he is the rock I will build this post on. The reason one group died and the other thrived is quite obvious. It is not because they simply lacked fire; it is that they lacked the ability to extend their minds beyond their current knowledge in order to solve a problem. Moreover, they not only lacked the ability, they lacked the drive—a troubling trend that is becoming more pronounced as the misguided “war” between artists and scientists rages on, insofar as an intellectual war can rage.

If you were to ask a scientist what he or she would do when posed with a problem, the answer will invariably be something along the lines of, “I would wrestle it to the ground with my considerable intellect until it yields its secrets.” During my time at TRIUMF, I have noticed a deep, well-deserved pride in every scientist in their ability to solve problems. Therefore, it is truly a sad state of affairs when our scientists look at something that puzzles them and then look away. To me, that’s no scientist. That is someone who has grown too complacent, too comfortable, in the vastness of their knowledge that they begin to shy away from things that challenge them in a way they aren’t used to. What’s more is that no one (artists or scientists) sees this as a defeat. As soon as you’ve said, “Oh well, different brain,” you’ve lost.

Any person familiar with rhetoric will tell you that in order to build a strong argument and persuade people, you have to be honest. Be sneaky and fail to address something potentially damning and your credibility is shot and the argument is void. Since it works so well in politics (snark), I figure I should give is a shot here. The problem of the Different Brain argument does not just lay with the scientists; if I’ve excoriated them, it’s out of fear that soon, a generation of scientists will stop growing and thinking. The artists are guilty of invoking the Different Brain argument as well whenever faced with math, science, or anything, really, that they didn’t want to do. The only difference between the two is that I heard a scientist use the different brain argument in a place of science, in a place where knowledge is the point.

Different Brain is a spurious concept, which is obvious to anyone with more grey matter than pride, but it’s not just wrong because I say it is. It’s wrong because look around you.

I was standing in the middle of Whistler Village with my fiancé, when we spied a poster for a band called Art vs. Science (you’re doing it wrong, guys!). She immediately said, “Science would win.” No question. No pondering. No soul-searching. Gut reaction, like flinching from a feigned punch. She’s a statistics major and biology minor, so she has a “science” brain and her response didn’t necessarily surprise me. I was a little sad, though, because she wasn’t seeing the world like I was seeing it. We debated the problem for a few minutes until I told her to look around.

The shape of the buildings: Architecture

The pleasant configuration of the shrubbery: Horticulture

The signage on the buildings and lampposts: Design

The food in the bag in my hand: Cooking

The phone in her hand: Technology

I asked her to picture a world where science had “won”. What’s architecture without art? A shape. What’s horticulture without art? A forest. Design? A grid. Cooking? Paste. Technology? Sufficient. It’s a tough world to imagine. Look at the next thing you see and try to separate the science and art of it and imagine what it would look like, whether it would function at all. It’s absolutely dystopian.

It was then that my argument became clear: science and art are inextricable. There can be no dismissing, no deigning, no sighing in the face of it. There can only be and has only ever been unity between the two. The problem is that the two warring sides are too preoccupied with the connotations the words “art” and “science” seem to realize it’s not a question of either/or, but both/neither.

I was worried about whether this war of the different brains would always rage between the two sides, but three things lent me hope and I hope they will lend you hope, too.

1.)  These two quotes from Bertholt Brecht (20th century German playwright and poet, whose work I don’t much care for):

“Art and science work in quite different ways: agreed. But, bad as it may sound, I have to admit that I cannot get along as an artist without the use of one or two sciences. … In my view, the great and complicated things that go on in the world cannot be adequately recognized by people who do not use every possible aid to understanding.”

and

“Art and science coincide insofar as both aim to improve the lives of men and women.”

2.) I was feeling discouraged about my argument for this post and had taken to turning it over in my mind even when I was otherwise occupied, but when I heard Rolf Heuer, the Director-General of CERN, say, only a handful of feet from my face, “Science and Art belong together,” I felt a renewed sense of vigor course through my brain, spurring me on. If one of the foremost scientific experts of our age can see it, I wonder why many of us turn away from it, when it is clearly there.

3.) In case one thinks that I’ve gone too soft on the artists, imagine a world without science. Think of our society as a book of fiction or a painting. Unequivocal works of art. Yet, what holds the book together? How were the pages manufactured? How were the chemical composition of the paints devised? Science.

Keeping these points in mind, I am calling for the abolition of the concepts underpinning the Different Brain argument. The war between art and science is one of mutually assured destruction and will turn us into a lopsided simulacrum of a culture if we are not careful.

–Written by Jordan Pitcher (Communications Assistant)

Share

Before I began working at TRIUMF, I knew that science communication was a thing; much in the same way that I knew that there was someone, somewhere manufacturing tissue paper. It was just something that was. Reading an article in Scientific American or, to an extent, Wired, I never paused to consider who had written the article and what made an effective piece of science writing. I simply read it and moved on. Now that I have written a few articles that discuss science—nothing too long or in-depth, mind you—I have caught a glimpse of the harrowing plight of the science communicator and it is one fraught with frustration and self-doubt, but it is not without hope.

I, along with the majority of the communications team at TRIUMF, attended a talk at UBC called, “STORYOMICS: Proof that Scientists Evolved from Humans,” presented by scientist and documentary filmmaker, Randy Olson. I won’t go into too much detail about what he talked about because, to me, it was somewhat commonsensical. (Note: This may be because I’m an English major, whose sole purpose is to be painfully familiar with the components of a story.)

After the talk, a man named Dave Ng joined us for lunch. While we were chattering away, he said something that, initially, seemed like just an insightful observation. However, It has been ricocheting around in the damp recesses of my brain ever since. The observation was this: when news broke about the faster-than-light neutrinos, everyone covered it. Everyone. Of all the people who covered it, what percentage do you think knew—without reciting the Wikipedia entry for it from memory—what a neutrino actually was? Very few, I would bet. Judging from what I had read at the time, it seemed that everyone had reposted chunks of CERN/OPERA’s press release with bits of fluff around it to make it look like an original work. The main thrust of my scattershot thought process, the philosophical question that has me wandering the desert of my psyche looking for an answer is: can you ever effectively report on/write about something that you don’t have a deep knowledge of?

I used to write for a university newspaper and, while I did write about current events and physical fitness (which, if you know me, is not my forte), I gravitated towards the Arts and Life section. I wrote about books, movies, television, and video games.  What do all of these things have in common? I know about them. When I wrote about books, I was in my natural element because I understood the underlying principles that govern narrative and I knew the significance of things that the woefully uninitiated don’t pick up on (I once wrote an entire paper on the use of en and em dashes in a play, so don’t even dispute me on this). The writing was full of verve and wit (if I do say so myself). It had a confident, singular voice behind it. Confidence is the key to communicating anything effectively, but it is rare to find someone who is confident speaking about something they are not knowledgeable of. That’s why we see this paradigm: The head of the communications department at TRIUMF, Tim Meyer, is an excellent science communicator…who has a PhD in physics. Randy Olson is an effective science communicator…who has a PhD in biology. The list goes on: Neil DeGrasse Tyson, Stephen Hawking, Carl Sagan, etc. The point is that there is no doubt that scientists can become communicators. Can communicators communicate science, though? That seems to be a point of contention for scientists and communicators alike.

Before we go any further, I should probably establish my credentials: My background in science is less than negligible. I took Physics 11 in high school and Biology 100 in university. One of my (many) problems is that I was born with the curiosity of a scientist but without any of the skills to back it up. My interest in science is what made the opportunity to work at TRIUMF so appealing. It promised the opportunity to write about science, which is something that scared me, still scares me.

I recently wrote about the controversy surrounding the CERN/OPERA faster-than-light neutrino experiment and I was nervous the entire time. The prose was shaky, too reliant on quotes, and meek. It was listless and gray, devoid of all effervescence or joie de vivre. It was a passable science article. I felt how I think many science communicators feel in the beginning: gutted. The lack of “myself” in the article called into question whether I could communicate effectively, or if I had ever done so.

Science communicators are in the enviable and rare position to be attacked from every angle: from scientists for not being thorough enough and from communicators for being boring and ineffective. Both parties are assailing disparate aspects of the work and no one is pleased. If you heard a funeral dirge in the back of your mind while reading this, prepare for the tinkling, inspirational piano number because, in my mind, there is hope. I’ve only been at TRIUMF for three months, but I already feel like I’ve learned a great deal about science communication.

1.)       Always collaborate, when possible, with someone who is deeply familiar with the science you are discussing. I know it’s easier to Google, but this is the Internet. I’m a doctor on the Internet. This way, when you cite your sources, you don’t have to cite Wikipedia, you can cite a professional, which will confer a lot of credence to whatever you wrote.

2.)       Metaphor is your new best friend. You already have a best friend? Too bad. You might not know the dictionary definition of metaphor, but humans have been using it forever (hyperbole) to communicate complex ideas to the many. The more complex the concept, the more important the metaphor becomes.

3.)       Don’t be afraid to imbue the work with a sense of style. This is what I see most often. People think that because something is about science, it needs to be antiseptic. It doesn’t. If you’re a communicator, you have a unique voice, or I hope you have, anyway.

With the modicum of experience that I have in communicating science, I realize I’m no professional—yet—and this is by no means an “answer” to the questions posed earlier. These points are, however, a jumping off point for people who may be thinking about communicating science, but are afraid it has to be the written or verbal equivalent of gruel. They are also for the people who are communicating science but it has become so mechanical for them that they can’t see themselves in their work anymore.

My time at TRIUMF lasts five more months, and the journey will, without a doubt, involve more frustration and failure in the face of this nigh-rhetorical question. Instead of gently weeping into that good night, I will use the words of Charles Kettering, an engineer I just Googled, to give me hope: “99 percent of success is built on failure.”

–Written by Jordan Pitcher (Communications Assistant)

 

Share

Powerless Haikus

Thursday, April 19th, 2012

Jordan is an English major on a Communications co-op term at TRIUMF. When the power went out at TRIUMF, he was asked to write about what it was like. He decided to write it in haiku. He had never written a haiku before. It showed.

I have never written a haiku before. After the power came on, I Googled haikus and these barely count.  Enjoy.

 

The power is out

There is nothing left to do

Except write haikus

 

Computers shut off

I forgot to save my work

Many strong expletives

 

Eyes raised to the ceiling

A brief respite from the screen

It is sunny out?

 

A brief argument

On the location of Spain

No one can Google

 

Two scientists turn

Engage in deep discussion

Or maybe shallow

 

Silent Meson Hall

Punctuated by a laugh

Cannot find the source

 

The power is back

I am Googling some haikus

Amateurish, I

– Written by Jordan Pitcher (Communications Assistant)

Share

This is a follow-up from our last post where Paul Schaffer, Head of the Nuclear Medicine Division at TRIUMF, was talking about his experience of being in the media spotlight. In this post, Paul talks more in-depth about the science of medical isotopes.

It all started 19 months ago. A grant that would forever change my perspective of science geared specifically toward innovating a solution for a critical unmet need—in this situation, it was the global isotope crisis. In 2010, not too long out of the private sector, I was already working on an effort funded by NSERC and CIHR through the BC Cancer Agency to establish the feasibility of producing Tc-99m—the world’s most common medical isotope—on a common medical cyclotron. The idea: produce this isotope where it’s needed, on demand, every day, if and when needed. Sounds good, right? The problem is that the world had come to accept what would have seemed impossible just 50 years ago.

The current Tc-99m production cycle, which uses nuclear reactors. Image courtesy of Nordion.

We are currently using a centralized production model for this isotope with just a six hour half-life. This model involves just a handful of dedicated, government-funded research reactors, producing molybdenum-99 from highly enriched uranium (which is another issue for another time). Moly, as we’ve come to affectionately call it, decays via beta emission to technetium, and when packaged into alumina columns, is sterilized, and encased in a hundred pounds of lead. It is then shipped by the thousands to hospitals around the world. The result: the world has come to accept Tc-99m, which is used in 85% of the 20 to 40 million patient scans every year as an isotope available from a small, 100 pound cylinder that was replaced every week or so, without question, without worry. Moly and her daughter were always there…but in 2007 and again in 2009, suddenly they weren’t. The world had come to realize that something must be done.

In the middle of our NSERC/CIHR effort, we were presented with an opportunity to write a proof-of-concept grant based on the proof-of-feasibility we were actively pursuing. Luckily, the team had come far enough to believe we were on the right track. We believed that large scale curie-level production of Tc-99m using existing cyclotron technology was indeed possible. The ensuing effort was—in contrast to the current way of doing things—ridiculous.

With extensive, continuous input from several top scientists from around the country, I stitched together a document 200 pages long. It was a grant that was supposed to redefine how the most important isotope in nuclear medicine was produced. 200 pages, well 199 to be exact, describing a process—THE process—we were hopefully going to be working on for the next 18 months. We waited…success! And we began.

The effort started the same way as the document – with nothing more than a blank piece of paper. Blank in the sense that we knew what we had to do, we just had not defined exactly how we were going to achieve our goal. But what happened next was a truly remarkable thing; with that blank sheet, I witnessed first-hand a team of people imagine a solution, roll up their sleeves and turn those notions into reality.

If you would like to read the PET report, click here

 

 

Share

Paul Schaffer is the head of the Nuclear Medicine Division at TRIUMF. For the past 18 months, he and his team have been devising a method for Canada and the world to have an alternative way to produce medical isotopes. Currently, these isotopes are created on aging nuclear reactors, which are beginning to show signs of wear by needing emergency repairs. These repairs stop the flow of isotopes, affecting hundreds of thousands of people around the world. This is an inside perspective of what it means to work on the front line, and be in the media spotlight.

I’m going to start this post with the day I had the privilege of standing in front of a group of reporters along with a few of my esteemed colleagues to announce that we had, in fact, delivered on a promise we had made just over a year ago; the promise of making medical isotopes with existing hospital cyclotrons. We had set out to prove that it was possible to produce Tc-99m on a small medical cyclotron and at quantities sufficient to supply a large urban centre. The solution to Tc-99m shortages is to decentralize production. It was an example of Canadian innovation at its best – by taking a group of existing machines in existing facilities already tasked at making various other medical isotopes and extending the functionality of those facilities to produce another isotope.

Paul presenting his team's findings

The response from the press was remarkable to witness. The interest was swift, broad, and far reaching. The 24-hour news cycle had begun and with it came a deluge of requests for radio, TV, and print interviews. In the ensuing days I read a number of wonderful reports from capable reporters, often writing about a topic well outside of their background or familiarity. For that, I admire the work that they collectively pulled together in the short amount of time involved.

Something else happened, though; something I didn’t anticipate – the ensuing media blitz ended up becoming a very personal social experiment, an intense self-examination. On the way to my first-ever national television interview, I can distinctly remember reality sinking in—for most of my life, I’ve dealt with significant hearing loss. In my ever-quiet world, acutely and perpetually punctuated by tinnitus, verbal communication can be a consuming task.

It is a fact that I comprehend only 33% of the words spoken to me and that my brain fills the gaps using whatever facts it can absorb from my surroundings—expressions, moving lips, and other non-verbal cues. In that car on the way to the interview, I couldn’t help but to continuously wonder about how I would handle verbal questions on camera? What do you say on live TV when you can’t for the life of you figure out what your conversational counterpart is saying? My wingman kept reassuring me, giving background from experience and many, many reassuring comments; but deep down I had to wonder, was this the moment when the whole situation would finally come undone? My charade of being able to hear the world around me would finally end. Worse still, had the moment come to sell the team’s amazing accomplishments on national TV, with a significant number of people literally watching; and all I kept wondering was: will it fall apart simply over an unheard or misinterpreted question? Good thing most communication is non-verbal.

The interview ended up being remote, with the reporters in Ontario and a conspicuous 5 second ‘safety’ delay between what I thought I heard and what showed up on the TV monitor facing me. Five seconds was long enough for them to cut out a fleeting wardrobe malfunction, should I become a bit too passionate during my scientific descriptions, but not nearly long enough to spare a poor soul a repeat question. So, seated in a large, empty, and thankfully quiet studio it began with a single chair, bright lights, and an audio test – ‘please count to 5’ came in over the ear piece…this out of context and no non-verbal queue jolted my fear into reality. I couldn’t understand the question. Out of the corner of my eye, I could see my wingman turn a shade lighter. Worry was setting in. The in-studio producer was almost dumbstruck – this ‘expert’ couldn’t count to five.  45 seconds to ‘go’ and he repeated the question. I got it, counted to five….30 seconds….15, an ambulance was coming, getting louder, I couldn’t hear the commercial any longer…..10, the ambulance was on the street directly below. I had to look away from the TV screen, as the delay was overwhelmingly distracting. 5 seconds. The sirens were starting to recede and before you knew it, I was live.

Paul on CTV News

At first I didn’t want to watch the interview, but family, friends and colleagues from across Canada starting chiming in and eventually convinced me to watch. I felt satisfied with the results, relieved that I had heard every question, answered everything without wandering or forgetting what the question was, covering the topics I wanted to cover. However, I was definitely watching an objective projection of somebody I wasn’t familiar with. I won’t get into the details of what I saw – it’d be different for everyone, but the experience has been life altering, as has this project. That said, I’m proud of the team that has worked so well and so hard together for the past 18 months. It’s been a remarkable project on all fronts. Whether our results continue to keep their momentum and become a permanent solution to the isotope issues that plagued us for two years remains to be seen. I do know success when I see it, and this team of Canadian scientists, engineers, and medical professionals should all be immensely proud of what they have done. They are Canadian innovation at its best.

The team of TRIUMF scientists Paul collaborated with on the groundbreaking project

 

Share

A Grumpy Note on Statistics

Tuesday, March 13th, 2012

Last week’s press release Fermilab about the latest Higgs search results, describing the statistical significance of the excess events, said:

Physicists claim evidence of a new particle only if the probability that the data could be due to a statistical fluctuation is less than 1 in 740, or three sigmas. A discovery is claimed only if that probability is less than 1 in 3.5 million, or five sigmas.

This actually contains a rather common error — not in how we present scientific results, but in how we explain them to the public. Here’s the issue:

Wrong: “the probability that the data could be due to a statistical fluctuation”
Right: “the probability that, were there no Higgs at all, a statistical fluctuation that could explain our data would occur”

Obviously the first sentence fragment is easier to read — sorry![1] — but, really, what’s the difference? Well, if the only goal is to give a qualitative idea of the statistical power of the measurement, it likely doesn’t matter at all. But technically it’s not the same, and in unusual cases things could be quite different. My edited (“right”) sentence fragment is only a statement about what could happen in a particular model of reality (in this case, the Standard Model without the Higgs boson). The mistaken fragment implies that we know the likelihood of different possible models actually being true, based on our measurement. But there’s no way to make such a statement based on only one measurement; we’d need to include some of our prior knowledge of which models are likely to be right.[2]

Why is that? Well, consider the difference between two measurements, one of which observed the top quark with 5 sigma significance and the other of which found that neutrinos go faster than light with 5 sigma significance. If “5 sigma significance” really meant “the probability that the data could be due to a statistical fluctuation,” then we would logically find both analyses equally believable if they were done equally carefully. But that’s not how those two measurements were received, because the real interpretation of “5 sigma” is as the likelihood that we would get a measurement like this if the conclusion were false. We were expecting the top quark, so it’s a lot more believable that the excess is associated with the top quark than with an incredibly unlikely fluctuation. But we have many reasons to believe neutrinos can’t go faster than light, so we would sooner believe that an incredibly unlikely fluctuation had happened than that the measurement was correct.[3]

Isn’t it bad that we’d let our prior beliefs bias whether we think measurements are right or not? No, not as long as we don’t let them bias the results we present. It’s perfectly fair to say, as OPERA did, that they were compelled to publish their results but thought they were likely wrong. Ultimately, the scientific community does reach conclusions about which “reality” is more correct on a particular question — but one measurement usually can’t do it alone.

———————————

[1] For what it’s worth, I actually spent a while thinking and chatting about how to make the second sentence fragment simpler, while preserving the essential difference between the two. In this quest for simplicity, I’ve left off any mention of gaussian distributions, the fact that we really give the chance of a statistical fluctuation as large or larger than our excess, the phrase “null hypothesis,” and doubtless other things as well. I can only hope I’ve hit that sweet spot where experts think I’ve oversimplified to the point of incorrectness, while non-expert readers still think it’s completely unreadable. ;)

[2] The consensus among experimental particle physicists is that it’s not wise to include prior knowledge explicitly in the statistical conclusions of our papers. Not everyone agrees; the debate is between Frequentist and Bayesian statistics, and a detailed discussion is beyond the scope of both this blog entry and my own knowledge. A wider discussion of the issues in this entry, from a Bayesian perspective, can be found in this preprint by G. D’Agostini. I certainly don’t agree with all of the preprint, but I do owe it a certain amount of thanks for help in clarifying my thinking.

[3] A systematic mistake in the result, or in the calculation of uncertainties, would be an even likelier suspect.

Share

My Time at AAAS 2012

Thursday, March 8th, 2012

Jordan is an English major on a Communications co-op term at TRIUMF. This is his take on the AAAS conference that took place this February in Vancouver. AAAS is a conference that gathers researchers from around the world from all disciplines to share ideas with each other, the media, and the public.

It is difficult to write about any event, be it a concert or a science convention, without slipping into a pattern that resembles a mad-lib (e.g. “I saw noun and it was adjective!”). In order to avoid that particular pitfall, it’s important to focus on the individual connection one forges with the event, the broader implications of the event, and the emotions evoked by it. AAAS 2012 was, surprisingly, an event suffused with emotion. I say “surprisingly” because “science” is a word that carries with it the connotation of a stodgy atmosphere built upon cold rationalism. Despite this, the atmosphere at AAAS 2012 was built on anything but.

AAAS 2012 began on a typical (see: rainy) Friday morning in Vancouver, but the mood inside the exhibit hall was in stark contrast to the gloom outside. Though it was quite early in the morning and a number of exhibitors were frazzled and silently checking and rechecking their to-do lists, the hall quickly became characterized by laughter and discussion. People dropped by booths asking after old friends they had previously worked with, smiling at the old memories and the assurances that their friends were doing well. People who knew each other only by reputation met on the floor of the exhibit hall and traded stories about their current projects and experiments. People who did not know one another perused booths, asked questions, handed out business cards, and walked away deep in thought. The entire exhibit hall was a microcosmic example of the scientific community as a whole; a community fueled by curiosity, collaboration, camaraderie, and a friendly sense of competition. Though Friday was not open to the public, there were still a number of unique visitors, particularly American Junior Academy of Science (AJAS) members to students who had registered for student scholarships through TRIUMF and the BC Innovation Council (BCIC). These students were given a full conference pass and a one-year membership to AAAS. The AJAS members and student scholarship recipients displayed a sense of curiosity and mental alacrity befitting the next generation of scientists as they interacted with one another and the ideas presented at numerous booths.

The free public event, Family Science Days, opened on Saturday and it made the excited atmosphere of Friday seem funereal. The enthusiastic chatter of the children who attended Family Science Days with their parents in tow created the feeling only generated by like-minded individuals, radically diverse in ages and backgrounds, interacting with one another without any sense of pretension or disingenuousness. It was an interesting example of how science has the power to unify people. This is fitting, since the theme of the conference was  “Flattening the World: Building a Global Knowledge Society.” To me, the theme of the conference was fully realized when I looked around and saw the old educating the young and the young inspiring the old with a vigor for attempting to understand the unknown and a heavy reliance on the words “why” and “how.” I’m sure this brought a smile to every scientist’s face, knowing that the inquisitiveness that has spurred scientific discovery for thousands of years remains an inextinguishable human trait that will always express itself, irrespective of one’s age or background.

In describing the emotions I witnessed, I have neglected to mention the emotions I experienced during my time at AAAS 2012. Being an exhibitor, I suspect I felt more stress than many of the regular attendees. It wasn’t like being stressed about exams; it was more like unveiling a piece of art and stressing about whether people would enjoy it – more butterflies than flop sweat. As my comrades—wartime slang is perfectly appropriate in this situation, I think—and I began to entertain visitors with magnet demonstrations and educate them about cyclotrons, the worry dissipated and gave way to excitement. People were enjoying our booth and I got to test the boundaries of my memory, attempting to recount the entire Wikipedia page for “Cyclotrons” and “Higgs boson.” I’m not a scientist—far from it, in fact—but I enjoyed the lively discussions and even managed to actually learn a thing or two in the process.

 

Share

Anatomy of an aurora

Thursday, January 26th, 2012

This week the Earth has seen some increased magnetic activity in the upper atmosphere, and that means we got to see aurore! Across Northern Europe and the Northern USA people looked to the skies to see the northern lights. An aurora is one of the most beautiful sights in the natural world, and a phenomenon that actually tells us a lot about the Earth and how it interacts with its environment.

Those who followed me on Twitter (@aidanatcern) may have already seen some of the wonderful images of aurorae. There are dedicated webcams that capture the night sky, and you can see some sample images at the Aurora Webcam archive.

Aurora over Alaska (wikimedia)

Aurora over Alaska (wikimedia)

When charged particles accelerate or decelerate, or recombine in pairs, they emit electromagnetic radiation, and it is this radiation that we see in the aurora. The color of the light depends on the wavelength of the radiation, and the intensity of the light depends on how much radiation is emitted. That means that there is always an aurora above us, but if the energy of the radiation is too low, or the intensity is too weak, we won’t see anything. Once we know how to interpret the light we can learn something about the radiation that is emitted. Usually we see a variety of colors in an aurora and each color corresponds to a different wavelength, so if we can see a region of the sky that is all one color, we know that the wavelength (and hence the energy, ignoring the effects of aberration) must be the same. That means we can “map” the sky and find contours of wavelength.

Since the particles are accelerating, there must be something that causes the acceleration. The Earth’s core is made of (among other materials) molten iron. The rotation of the Earth means that this core is also rotating, and a rotating fluid magnetic medium creates a magnetic dipole, giving the Earth magnetic North and South poles. These poles are aligned near the geographic North and South poles of the Earth, but not exactly. (In fact, magnetic North and South keep moving and from time to time they even swap places. The exact mechanism behind this is not yet fully understood, but geological records show it happens every few hundred thousand years. Simulations suggest that the rotating magnetic fluid is a chaotic system, so the reversals occur at stochastic, or random, intervals of time.)

The sun produces a stream of particles, known as the solar wind, and they create their own electromagnetic field. The two fields, from the Earth and the sun, interact and they force charged particles in the upper atmosphere along curved paths. As the particles move along these paths they accelerate, decelerate and recombine, and that is what produces the aurorae. The most recent increase in magnetic activity can be traced back to a huge coronal mass ejection that arrived from the sun. This video shows the arrival of the flare:

The effect looks impressive, but don’t be scared, solar winds like this are perfectly harmless. Far bigger winds have hit the Earth in the past few billions years and life has continued to flourish in spite of them. Life has adapted to the Earth’s magnetic field and this field protects us from the high energy particles.

It turns out that while looking up at the night sky is a beautiful and moving experience in itself, it is also important to particle physicists. Some of the most important discoveries in the last century came from a different phenomena, cosmic rays. Cosmic rays are very high energy particles (usually protons) that travel huge interstellar distances and rain down on the Earth in much the same way that the solar wind does. They interact with the upper atmosphere to create cascades of particles, and usually the muons are the only detectable particles that reach sea level. Interactions of these cosmic rays gave rise to the discovery of the muon (“Who ordered that?!”), the pion and the kaon, the lightest forms of mesonic matter. It was around this time that large scale accelerators were developed, and we found hundreds of new mesons and baryons. Cosmic rays gave us a very small glimpse into a rich “zoo” of particles that has occupied physicists ever since.

Eventually, when we have exhausted our ability to accelerate particles to higher energies we might need to rely on cosmic rays again. There are proposals to develop ground based detectors to study the interactions of extremely high energy particles from outer space. Those particles have the potential to reach energy regimes we can only dream of at the moment. (Incidentally, this is one of the ways that we know for sure that the LHC cannot destroy the world. The universe creates much more energetic particles than we could ever hope to create in our accelerators, and since the universe seems to be in one piece we can conclude that the LHC is safe on Earth!)

An aurora from above (Expedition 28 on board the International Space Station)

An aurora from above (Expedition 28 on board the International Space Station)

If you’re fortunate enough to see an aurora then take a few moments to think about the huge forces at work, the vast distances involved, and how the colors tell us so much about how the Earth and solar wind behave. It really is one of the most beautiful phenomena in the universe.

Share

Change of state

Friday, November 25th, 2011

A few weeks ago I bumped into one my group’s former students, Rozmin. She’s still jetlagged from her journey here and she had the look on her face that told me she’d been through the change of state. She’d transitioned from a grad student to a postdoc. The metamorphosis is not an easy one, and in fact no matter how much time you spend preparing for it, and how long it takes, there are always some surprises.

A while back she was still editing her thesis. Today she is finding her feet in a new role, one with more responsibilities, more challenges and fewer safety nets. From now on, students will look to her for help, and expect to get answers. I should point out that grad students do a great deal of the work here at ATLAS, and they answer a lot of the questions we have, and perform a lot of the studies that we need. But they’re here primarily to learn, the postdocs are primarily here to work, and at the back of our minds we have prejudices about our roles. As a postdoc I feel that I should be mentoring students and helping them, rather than having them help me, even though I spent most of my first year here playing catch up with students who knew the experiment inside out. As a student on BaBar, what mattered most was getting the thesis written, and I felt that it was okay to make mistakes, ask for help and tell people I didn’t really know what I was doing.

Becoming a postdoc

Becoming a postdoc

The difference between being a student and a postdoc is mostly cosmetic, and a lot of the time it’s hard to tell whether someone has graduated yet. The real difference is one of attitude. When Rozmin was a student she was impressed that I seemed to know a little bit about every part of particle physics, especially the history. She would ask me how I knew about the history of CP violation and the tau-theta puzzle, and I’d reply knowingly “It’s a postdoc thing.” “Like a special power?” “Yeah, postdoc power!” Of course at that point she knew it was a bit of an act. I knew little more than she did, but I said it with confidence, and that inspires confidence in others. I’ve had quite a few roles where I had to put on an act of confidence like that. One of my favorite examples was when I worked for a telephone helpline where there was a locked desk drawer full of secret help for the coordinators. When I finally saw what was inside I was surprised to find nothing but a bottle of gin, some chocolate, and an electric drill. I asked what the drill was for and they replied “To stop volunteers messing around with it.” Huh. It looks like sometimes we need to be told that the only source of reassurance is feigned confidence.

Sometimes this is all the help you get...

Sometimes this is all the help you get...

There’s no magic solution, no ancient wisdom and in research, everything is new. Once you realize that, and once you realize that everyone is out of their depth and everyone is working without a safety net, life becomes much easier. Then you can tell your grad students what they need to hear. “That’s an interesting question, let’s look it up online” means “I don’t know any more than you do”, “Let’s talk to Frank about this over coffee” means “I have no idea how to even get started on this problem, but I could use a break”, and “A similar study was tried at UA1″ means “I have a tiny amount of information about this from a long time ago, but at least that means it’s not completely new.” And so on. It’s takes a while to get used to. I even managed to get a taste of life as a Professor recently. When faced with a particularly challenging problem the head of our department told me simply “Welcome to the world of supervision!” In that world, the stakes are higher, the help is rarer and it takes even more courage to make decisions with so much uncertainty.

Naturally there are more changes than a slightly different day job. Rozmin has had to move house (to a different continent) again and settle down somewhere new. This is one of the most traumatizing experiences a person can go through, so doing it in French, when your husband is thousands of miles away and you’ve got a high pressure job (as well as your student’s high pressure job) taking up all your time, it can get even more tricky. The dynamic of our friendship has changed since she got back, as we spend more time together, going for a coffee or a drink, talking about our respective jobs and problems. The shift in our friendship has brought us closer and now we’re both free of our theses, and can focus on what we came here for, the physics.

It's all about the small achievements

It's all about the small achievements

It’s challenging, it’s scary, it’s all about the unknown and even the unknowable. But it’s like I always say: We don’t these things because they’re easy, we do them because they’re hard.

Happy Thanksgiving Weekend! Thanks to Jorg Cham for the comics. PHD Comics

Share