“Hello” from Brookhaven National Laboratory, the land of quarks, nanoparticles, proteins, superconductors, and lots of deer and wild turkeys. We’re really excited to be a part of this new version of Quantum Diaries along with our friends from CERN, Fermilab, and TRIUMF. Through this blog, we’ll focus on one very important piece of Brookhaven’s multidisciplinary research portfolio: physics.

The independent discovery of the J/psi by Samuel Ting (front) of the Massachusetts Institute of Technology, at BNL's Alternating Gradient Synchrotron, and by Burton Richter, of the Stanford Linear Accelerator Center, earned its co-discoverers the 1976 Nobel Prize in physics. Shown with Ting in this photo are members of his experimental team.
From its early history, Brookhaven Lab has played a leading role in the exploration of matter and the early universe through groundbreaking nuclear and particle physics experiments. In fact, five of the Lab’s seven Nobel Prizes were awarded for physics research.
Today, Brookhaven continues this leadership role through several large-scale facilities on our site and around the world. At the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile particle racetrack, scientists collide beams of “heavy ions” – the nuclei of atoms as heavy as gold – to replicate conditions microseconds after the Big Bang. This research has led to a series of stunning discoveries, including quark-gluon plasma, a “perfect”-liquid state of matter that permeated the early universe. In addition to colliding heavy ions, RHIC is able to collide single protons to reveal details about a puzzling property called “spin.”