• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘test beam’

This article appeared in Fermilab Today on May 5, 2015.

Technicians John Cornele, Pat Healey and Skyler Sherwin have been crucial in preparing the LArIAT detector for beam. The liquid-argon-filled detector saw first beam on Thursday. Photo: Jen Raaf

Technicians John Cornele, Pat Healey and Skyler Sherwin have been crucial in preparing the LArIAT detector for beam. The liquid-argon-filled detector saw first beam on Thursday. Photo: Jen Raaf

Fermilab’s Test Beam Facility (FTBF) now runs a second beamline to provide particles for R&D experiments. The MCenter beamline came back to life last year after an eight-year slumber to join the facility’s other beamline, MTest.

On Thursday, April 30, accelerator operators began using the revived beamline to send particles to its first major experiment, Liquid Argon TPC in a Test Beam (LArIAT), which will help advance particle detector technologies for neutrino experiments.

The FTBF provides experiments with different types of particle beams with a range of energies. Its main purpose is the research and development of particle detectors. It is one of only two sites in the world that provides this service with high-energy hadrons, which are particles made of quarks. Since 2005, the FTBF, with its distinctive orange and blue corrugated-steel roof, has staged more than 50 experiments, conducted by scientists from more than 170 institutions in 30 countries.

“We’re very busy and fully subscribed,” said JJ Schmidt, deputy facility manager at FTBF. “The existence of two beams allows us to serve a broader class of experiments.”

Not only does the new beamline allow FTBF to serve a larger number of users, it also provides room for a greater diversity of experiments. While MTest is aimed at experiments with a turnover of about one to four weeks, MCenter caters to more long-term experiments like LArIAT that will last for months, or even years.

Beautiful tracks at first try
LArIAT is a liquid-argon time projection chamber. Charged particles traveling through the sea of liquid argon ionize the argon atoms, and an electric field causes liberated electrons to drift toward the detector readout. Different particles cause different amounts of ionization, allowing researchers to distinguish between particles such as pions, kaons and protons.

This plot shows LArIAT's first tracks: two views of a charged particle interacting inside the LArIAT detector, which is filled with liquid argon.

This plot shows LArIAT’s first tracks: two views of a charged particle interacting inside the LArIAT detector, which is filled with liquid argon.

The first spill of particles delivered to LArIAT led to immediate success. The detector recorded picture-perfect tracks of charged particles.

Like the test beam, LArIAT will act as a research and development vehicle for future projects. Because neutrinos can be studied only through the particles produced when they interact with material inside a particle detector, being able to reliably characterize these other particles is of great importance.

“This is going to be fantastic not only for LArIAT but all the neutrino experiments that will use its results,” said Jen Raaf, co-spokesperson for LArIAT.

LArIAT will run the test beam for 24 hours a day while experimenters take data. The first run will last about three months, after which the detector’s cryogenic system will undergo upgrades to prepare for longer follow-up runs.

“It’s great that we have a facility where a small experiment can take beam over a long term,” said Brian Rebel, a scientist involved in LArIAT.

About 75 people from 22 institutions from the United States, Europe and Japan work on this experiment.

“Most are young postdocs and Ph.D. students that are enthusiastically doing a great job,” said Flavio Cavanna, LArIAT co-spokesperson.

“It’s an exciting combination of many years of work by the Accelerator, Particle Physics, Neutrino and Scientific Computing divisions to have the capability to do research that is important for making this the premier neutrino laboratory in the world,” Schmidt said.

Diana Kwon

Share

Let there be beam!

Wednesday, October 15th, 2014

It’s been a little while since I’ve posted anything, but I wanted to write a bit about some of the testbeam efforts at CERN right now. In the middle of July this year, the Proton Synchrotron, or PS, the second ring of boosters/colliders which are used to get protons up to speed to collide in the LHC, saw its first beam since the shutdown at the end Run I of the LHC. In addition to providing beam to experiments like CLOUD, the beam can also be used to create secondary particles of up to 15 GeV/c momentum, which are then used for studies of future detector technology. Such a beam is called a testbeam, and all I can say is WOOT, BEAM! I must say that being able to take accelerator data is amazing!

The next biggest milestone is the testbeams from the SPS, which started on the 6th of October. This is the last ring before the LHC. If you’re unfamiliar with the process used to get protons up to the energies of the LHC, a great video can be found at the bottom of the page.

Just to be clear, test beams aren’t limited to CERN. Keep your eyes out for a post by my friend Rebecca Carney in the near future.

I was lucky enough to be part of the test beam effort of LHCb, which was testing both new technology for the VELO and for the upgrade of the TT station, called the Upstream Tracker, or UT. I worked mainly with the UT group, testing a sensor technology which will be used in the 2019 upgraded detector. I won’t go too much into the technology of the upgrade right now, but if you are interested in the nitty-gritty of it all, I will instead point you to the Technical Design Report itself.

I just wanted to take a bit to talk about my experience with the test beam in July, starting with walking into the experimental area itself. The first sight you see upon entering the building is a picture reminding you that you are entering a radiation zone.

ps_entrance

The Entrance!!

Then, as you enter, you see a large wall of radioactive concrete.

the_wall

Don’t lick those!

This is where the beam is dumped. Following along here, you get to the control room, which is where all the data taking stuff is set up outside the experimental area itself. Lots of people are always working in the control room, focused and making sure to take as much data as possible. I didn’t take their picture since they were working so hard.

Then there’s the experimental area itself.

the_setup

The Setup! To find the hardhat, look for the orange and green racks, then follow them towards the top right of the picture.

Ah, beautiful. 🙂

There are actually 4 setups here, but I think only three were being used at this time (click on the picture for a larger view). We occupied the area where the guy with the hardhat is.

Now the idea behind a tracker testbeam is pretty straight forward. A charged particle flies by, and many very sensitive detector planes record where the charged particle passed. These planes together form what’s called a “telescope.” The setup is completed when you add a detector to be tested either in the middle of the telescope or at one end.

Cartoon of a test beam setup. The blue indicates the "telescope", the orange is the detector under test, and the red is the trajectory of a charged particle.

Cartoon of a test beam setup. The blue indicates the “telescope”, the orange is the detector under test, and the red is the trajectory of a charged particle.

 

From timing information and from signals from these detectors, a trajectory of the particle can be determined. Now, you compare the position which your telescope gives you to the position you record in the detector you want to test, and voila, you have a way to understand the resolution and abilities of your tested detector. After that, the game is statistics. Ideally, you want to be in the middle of the telescope, so you have the information on where the charged particle passed on either side of your detector as this information gives the best resolution, but it can work if you’re on one side or the other, too.

This is the setup which we have been using for the testbeam at the PS.  We’ll be using a similar setup for the testbeam at the SPS next week! I’ll try to write a follow up post on that when we finish!

And finally, here is the promised video.

 

Share