• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Posts Tagged ‘Triggers’

Versão em Português abaixo…

Passed the crazy week of the Higgs finding, or, if we are to keep the complete scientific correctness, the weird different particle which is most likely the one that we have been searching for “just” 30 years, well, after that I feel like it is time to explain the different pieces that contributed to such historic finding. The whole thing depends, as is often said, in a number of different factors which we will never be able to put in a few pages of a blog or anything of the sort. Still, I’d like to urge you to hang on a bit and hopefully, you will find as I do, lots of interesting little details. I will try to make a little weekly series that should tell the history of the parts of the ATLAS detector which I happen to be closer to : The ATLAS Calorimeter and Trigger systems.

Let’s start right at the moment when the huge energy accumulated by a proton (this little system of 3 massive particles called quarks and nobody knows how many gluons) is concentrated in a very small volume of space. This energy, following the famous E=mc2, crystalizes in the form of different types of particles. Many of the collisions happen at the so-called parton (a quark or a gluon) level. That means that most likely a shower of particles called a jet will come out of the collision. Well, actually, two jets will usually be produced (things must always balance!). Very rarely, however, other processes take the role and make something completely different. For instance, sometimes, they will produce a Z or W boson. Both are, in the kingdom of particles that we call the Standard Model, what we could call the heavy weights, having lots of mass (one can say more than 80 GeV – Giga-electron-Volts). These guys, when formed, have a very short life (around 3×10-25s), but don’t waste your time thinking on how many zeros do you have to write, just keep in mind that no Z’s or W’s will ever leave the small pipes that bring the protons into collision. Much before that happens, a Z, for instance, will decay, producing a pair of particles that take the energy unfrozen (if you want) in their mass as speed. So, we talk about Z->ee. The Z particle has a mass around 91 GeV and the electrons will have, on average, half of that in “speed energy”. One interesting thing that is always present in physics (check my other colleagues in this blog) is that many properties must be conserved. For instance, the Z particle has no electric charge, but the electron has a negative charge. So, actually, what we get is not a pair of electrons, but, rather, an electron-positron pair, the positron being the positive charged version of the electron, or as we call the electron antiparticle. So, if I wanted to be more rigorous, I should have written Z->e+ e, meaning that a zero charged particle results in a positive and negative charges : the sum is zero again!

The particles (and the anti-particles!) will invade the detector coming from the center (the beam pipe) crossing layers of detectors in the way and will finish their journey in the calorimeters. These devices were developed during many years and now, only in one of the ATLAS calorimeters, we are around 300 people working together!!. For now I will stop here. In the next week, I will explain what happens when each of the electrons enter in the calorimeter and how we use this information to detect the electron and make physics out of it!

To give you a quick taste of what is to come, I call your attention to two videos available in youtube. In the first one, you see the chain of accelerators with increasing size and proton energy. When we get to the LHC, the image zooms inside the tunnel and you will see the equations of the Standard Model of particles in the walls (like we would do that..) The proton will cross the French/Switzerland border in a complete illegal form (no passports!!!) and you will see the colored quarks inside the proton until they meet inside the detector. In the second collision, you will see the Z->ee event. After the collision, the software marks the two blue tracks left be the electron-position pair in the tracking detector and “illuminates” a few of the calorimeter cells represented in green in the movie. We will discuss what happens and how we can see these cells in the next postings. And, later on, you will understand the relation between detecting a Z and detecting a Higgs…
First video : http://www.youtube.com/watch?v=NhXMXiXOWAA
Second video : http://www.youtube.com/watch?v=RdYvtm4CIAE

Portugaise version :

Como Funciona um Detetor de Partículas!!

Passada a semana louca da descoberta do Higgs, ou se quisermos manter a imparcialidade e a retidão científica, a estranha e diferente partícula que muito provavelmente é aquela que estivemos procurando por “apenas” 30 anos, penso que é hora de explicar um pouco todas as peças que contribuíram para essa descoberta histórica. A coisa toda depende numa multitude de fatores os quais nunca poderemos colocar em algumas páginas de um blog. Ainda assim, peço que vocês agüentem firme e, quem sabe, vocês encontraram o mesmo prazer que eu em compreender os pequenos detalhes que fazem o sucesso dessa incrível experiência. Tentarei manter um fluxo de episódios semanais explicando como funciona a parte do ATLAS que conheço mais de perto : O Calorímetro e o Sistema de seleção do ATLAS.

Comecemos exatamente no momento em que a enorme energia acumulada por um próton (esse pequeno sistema de três partículas massivas e não sabemos quantos glúons) se concentra num pequeno volume de espaço. Seguindo o famoso E=mc2, essa energia “se cristaliza” na forma de diferentes tipos de partícula. A maior parte das colisões ocorre entre partons (quarks ou glúons), resultando numa cascata de diferentes partículas, à qual damos o nome de “jato”. Normalmente, como a experiência tem um certo balanço a respeitar, temos dois jatos sendo produzidos com energias bastante similares. Muito raramente, entretanto, outros processos acontecem e algo completamente diferente pode surgir. Por exemplo, algumas vezes, tais processos podem produzir um bóson Z ou W. Ambos são, no reinado das partículas que chamamos de Modelo Padrão, o que podemos chamar de Pesos Pesados (pode-se dizer falar de uma massa maior que 80 GeV – Giga-elétron-Volts). Tais partículas têm uma vida muito curta de 3×10-25s, mas nem perca tempo pensando em quantos zeros se deve colocar depois da virgula. Saiba apenas que um Z formado não chega jamais a tocar o tubo que traz os prótons até o ponto de colisão. Um Z decai, produzindo, um par de partículas que levam a energia contida na massa do Z. Assim, falamos de Z->ee. Como o Z tem uma massa próxima a 91 GeV, os elétrons vão carregar média metade desse valor em “energia do movimento”. Outra coisa interessante (pesquise um pouco os artigos de meus colegas nesse blog) e que é sempre importante em física é que muitas quantidades devem ser conservadas. Assim, como o Z não tem carga elétrica e o elétron tem uma carga negativa, um dos elétrons é, na verdade, um pósitron, a anti-partícula do elétron com carga positiva. Assim, o Z sem carga resulta em uma carga positiva e uma negativa : a soma é zero! Se eu quiser ser realmente rigoroso, tenho que escrever Z->e+ e.

As partículas (e as anti-partículas!) invadem o detetor vindo do centro (onde está o tubo com os feixes) atravessando camadas de detetores e terminando sua viagem nos calorímetros. Esses aparelhos foram desenvolvidos em muitos anos de estudo e, hoje em dia, apenas um dos calorímetros do ATLAS ainda precisa de 300 pessoas trabalhando continuamente!! Por agora, eu vou parar por aqui. Na próxima semana, vou explicar o que acontece quando cada um dos elétrons entra no calorímetro e como usamos essa informação para detectar o elétron e “fazer física”!

Para dar um gostinho do que está por vir, gostaria de chamar atenção de vocês pra dois vídeos disponíveis no youtube. No primeiro, vocês podem ver toda a seqüência de aceleradores com tamanho e energia cada vez maiores. Quando chegamos no LHC, a imagem entra no túnel, em cuja parede, podemos ver as equações do Modelo Padrão de partículas (como se fosse verdade!). O próton que seguimos atravessa “ilegalmente” (alguém já viu um próton com passaporte?!) a fronteira da França com a Suíça e vocês podem ver os quarks viajando dentro do próton até a colisão dentro do detetor. Na segunda colisão, vocês podem ver um evento Z->ee se formando. Depois da colisão, o programa identifica os traços deixados pelo par elétron-pósitron no detetor de traços com linhas azuis. O par também “ilumina” algumas células do calorímetro representadas em verde no filme. Vamos discutir na semana que vem o que acontece e como podemos ver essas células no próximo blog… E, mais tarde, vamos entender qual a diferença entre detectar um Z e um Higgs…

Primeiro vídeo : http://www.youtube.com/watch?v=NhXMXiXOWAA
Segundo vídeo : http://www.youtube.com/watch?v=RdYvtm4CIAE
Canal ATLAS/Brasil : http://webcast.web.cern.ch/webcast/play.php?type=permanent&event=12

Share