• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘ultimate reality’

If there were only one credible interpretation of quantum mechanics, then we could take it as a reliable representation of reality. But when there are many, it destroys the credulity of all of them. The plethora of interpretations of quantum mechanics lends credence to the thesis that science tells us nothing about the ultimate nature of reality.

Quantum mechanics, in its essence, is a mathematical formalism with an algorithm for how to connect the formalism to observation or experiments. When relativistic extensions are included, it provides the framework for all of physics[1] and the underlying foundation for chemistry. For macroscopic objects (things like footballs), it reduces to classical mechanics through some rather subtle mathematics, but it still provides the underlying framework even there. Despite its empirical success, quantum mechanics is not consistent with our common sense ideas of how the world should work. It is inherently probabilistic despite the best efforts of motivated and ingenious people to make it deterministic. It has superposition and interference of the different states of particles, something not seen for macroscopic objects. If it is weird to us, just imagine how weird it must have seemed to the people who invented it. They were trained in the classical system until it was second nature and then nature itself said, “Fooled you, that is not how things are.” Some, like Albert Einstein (1879 – 1955), resisted it to their dying days.

The developers of quantum mechanics, in their efforts to come to grips with quantum weirdness, invented interpretations that tried to understand quantum mechanics in a way that was less disturbing to common sense and their classical training. In my classes in quantum mechanics, there were hand waving discussions of the Copenhagen interpretation, but I could never see what they added to mathematical formalism. I am not convinced my lecturers could either, although the term Copenhagen interpretation was uttered with much reverence. Then I heard a lecture by Sir Rudolf Peierls[2] (1907 – 1995) claiming that the conscious mind caused the collapse of the wave function. That was an interesting take on quantum mechanics, which was also espoused by John von Neumann (1903 – 1957) and Eugene Wigner (1902 –1995) for part of their careers.

So does consciousness play a crucial role in quantum mechanics? Not according to Hugh Everett III (1930 – 1982) who invented the many-worlds interpretation. In this interpretation, the wave function corresponds to physical reality, and each time a measurement is made the universe splits into many different universes corresponding to each possible outcome of the quantum measurement process. Physicists are nothing if not imaginative. This interpretation also offers the promise of eternal life.  The claim is that in all the possible quantum universes there must be one in which you will live forever. Eventually that will be the only one you will be aware of. But as with the Greek legend of Tithonus, there is no promise of eternal youth. The results may not be pretty.

If you do not like either of those interpretations of quantum mechanics, well have I got an interpretation for you. It goes under the title of the relation interpretation. Here the wave function is simply the information a given observer has about the quantum system and may be different for different observers; nothing mystical here and no multiplicity of worlds. Then there is the theological interpretation. This I first heard from Steven Hawking (b. 1942) although I doubt he believed it. In this interpretation, God uses quantum indeterminacy to hide his direct involvement in the unfolding of the universe. He simply manipulates the results of quantum measurements to suit his own goals. Well, He does work in mysterious ways after all.

I will not bore you with all possible interpretations and their permutations. Life is too short for that, but we are still left with the overarching question: which interpretation is the one true interpretation? What is the nature of reality implied by quantum mechanics? Does the universe split into many? Does consciousness play a central role? Is the wave function simply information? Does God hide in quantum indeterminacy?

Experiment cannot sort this out since all the interpretations pretty much agree on the results of experiments (even this is subject to debate), but science has one other criteria: parsimony. We eliminate unnecessary assumptions. When applied to interpretations of quantum mechanics, parsimony seems to favour the relational interpretation. But, in fact, parsimony, carefully applied, favours something else; the instrumentalist approach. That is: don’t worry about the interpretations, just shut up and calculate. All the interpretations have additional assumptions not required by observations.

But what about the ultimate nature of reality? There is no theorem that says reality, itself, must be simple. So quantum mechanics implies very little about the ultimate nature of reality. I guess we will have to leave that discussion to the philosophers and theologians. More power to them.

To receive a notice of future posts follow me on Twitter: @musquod.


[1] Although quantum gravity is still a big problem.

[2] A major player in the development of quantum many body theory and nuclear physics.

Share