• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

TRIUMF | Vancouver, BC | Canada

View Blog | Read Bio

“The life of a scientist: have you been disillusioned yet?”

– By Saige McVea, TRIUMF High School Fellowship Student

I was asked this question by Dave Ottewell, a veteran physicist who has worked with both the TITAN and DRAGON groups during his 37 year long career at TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics. It was during my second week participating in the TRIUMF High School Fellowship, and I must admit that since then, I have been completely and utterly disillusioned.

The first few days of my six week internship were spent in a haze; not only is the TRIUMF lab massive and labyrinthine to a newcomer with a poor sense of direction, but the individuals who work there (though they appear ordinary) speak a dialect of English rich in acronyms and scientific jargon. Quite simply, I was lost. However, I was also fortunate enough to be placed under the supervision of Jennifer Fallis, a post-doctorate research associate, and Chris Ruiz, the group leader with whom I have been working on the DRAGON experiment.

Once somewhat familiar with my new environment and the language being spoken, I was given a small project. I was to design a platform to which a pinhole camera, an LED light, and an alpha source could be mounted so that the deterioration of ultra-thin carbon foils could be observed within the MCP chamber. This seemed incredibly simple at first when compared to what I had previously been trying to understand, but in reality, it proved to be rather problematic.

Saige with her work for DRAGON

Acquiring the camera from a spy shop with Lars Martin, Jennifer, and Gabriel (a student participating in the Emerging Aboriginal Scholars Summer Camp) began the job on a comical note. However, every necessary step after that point was time consuming and rather frustrating. Parts needed to be located so that the camera could be tested in a vacuum chamber, LED light configurations needed to be explored so a quality image could be obtained, and the dimensions of the existing components of the alpha source platform needed to be verified. When I finally had my sketch of the platform completed, I decided to double check that it would not protrude into the oncoming beam-line, and was again exasperated. The current extendable arm could not sufficiently withdraw; therefore, the new platform would most likely interfere with the radioactive beam. This would be an easy fix if the extendable arm required (SBLM-275-6) to correct this issue did not cost $1100 and take 35 days to be delivered – a duration exceeding the length of my stay.

The collapse of the camera installation, however, allowed me to take on other projects during my time at TRIUMF. I was taught how to do some very basic data analysis of the Magnesium-24 run using a root terminal and elementary C++ programming. By using MCP time of flight to select BGO (Bismuth Germanate) detector data for the E0 spectrum, centroid positions and resonance energies could be determined. My data analysis was compared to that of Dave Hutcheon, who used the separator time of flight (time between detection of a gamma ray and a heavy ion arriving at the DSSSD) instead of MCP time of flight, and fortunately, our results were in agreement.

Other slices of my working hours were spent attending student lectures and seminars. While at the ARIEL workshop, I made “tweets” concerning the speakers’ presentations. Although there was an abundance of things very much beyond me, I was forced to focus on the scraps of information that I did understand. I also learned during these seminars that scientists can get extremely passionate about their beliefs in theoretical physics. Whether the Higgs exists, dark energy is real, or supersymmetry is valid, I cannot say; but I am very glad that much still remains unknown. Most recently, I have been updating DRAGON’s astro website, and will perhaps continue to do so after my work term has ended.

So, returning to my complete and utter disillusionment, a career in physics is nothing like I would have expected. It does not entail familiar procedures or strategized experiments with flawless results obtained in pristine laboratories that yield clear and obvious conclusions. From what I have seen, a career in physics it is about dedication, incessant learning, collaboration with peers, and the prevalent mentality that “if at first you don’t succeed, try, try again.”

I would like to give a huge thanks to the TRIUMF High School Fellowship Committee for giving me this wonderful opportunity, all members of the DRAGON team for patiently instructing me over these past six weeks, and the 2011 summer co-ops for being a fantastic group of people. I wish you all the best!

 

Share