• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Anna Phan | USLHC | USA

View Blog | Read Bio

Needle in a haystack

We are back to discussing B physics today, with the observation of the rare decay: \(B^- \rightarrow \pi^- \mu^+ \mu^-\). So what is this decay? It’s a \(B^-\) meson (made of a b and an anti-u quark) decaying into a \(\pi^-\) meson (made of a d and an anti-u quark) and two muons. And why is it so rare? Well, it’s a flavour changing neutral current decay. Which means that there’s a change in quark flavour in the decay, but not charge. This type of decay is forbidden at tree level in the Standard Model and so has to proceed via a loop, which can be seen in the centre of the Feynman diagram below.

If you look closer at the loop, you can see that for the decay to occur, a b quark needs to change flavour to a t or c quark, which then needs to change to a d quark. This is another reason why this decay is so rare. Transitions in quark flavour are governed by the CKM matrix, which I illustrate on the right, where the larger squares indicate more likely transitions. So while the transition from b to t is likely, the transition from t to d is very unlikely, and the b to c and c to d transitions are both fairly unlikely. This means, that whichever path is taken, the b to d quark transition is very very unlikely.

Okay, now to the LHCb result. Below I have a plot of the fitted invariant mass for selected \(\pi^-\mu^+ \mu^-\) candidates, showing a clear peak for \(B-\) decays (green long dashed line). Also shown are the backgrounds from partially reconstructed decays (red dotted line) and misidentified \(K^-\mu^+ \mu^-\) decays (black dashed line). Candidates for which the \(\mu^+ \mu^-\) pair is consistent with coming from a \(J/\psi\) or \(\psi(2S)\) are excluded.

We see around 25 \(B^- \rightarrow \pi^- \mu^+ \mu^-\) events and measure a branching ratio of approximately 2 per 100 million decays. This result makes this decay the rarest \(B\) decay ever observed!

Share

Tags: