• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Aidan Randle-Conde | Université Libre de Bruxelles | Belgium

View Blog | Read Bio

What you need to know about the Higgs seminar

The upcoming Higgs seminar could be the biggest announcement in particle physics for nearly 30 years. There have been several excellent blog posts and videos explaining what the Higgs is and what it does, so I’ll link to those at the bottom of the page. What I want to do here is give you the overview of what you really need to know to get the best from the talk.

Of course you should follow along with the liveblog as well!

What’s happening with the webcast?

CERN have put in a lot of resources for the webcast. General users can get to the webcast at http://cern.ch/webcast. If you have a CERN login you can use a second webcast at http://cern.ch/webcast/cern_users.

The webcast will start around 09:00 CST (that’s 00:00 US West Coast, 03:00 US East Coast, 08:00 UK, and 17:00 Melbourne.

What is the Higgs boson? What does it do?

The Higgs boson is part of the Standard Model of particle physics. The Standard Model includes the quarks and leptons (which make up all the matter see around us) and the photon, gluons, and \(W\) and \(Z\) boson (which carry all the forces in nature, except for gravity.) Three of these particles, the \(W^+\), \(W^-\) and \(Z\) bosons, have mass, but according to our framework of physics, they should not have mass, unless the Higgs boson exists. The Standard Model of physics predicts that the \(W\), \(Z\), photon and Higgs all come as a package and they are all related to each other. If we don’t see a Higgs boson, we don’t understand the world around us.

People say that the Higgs boson gives particles mass, but this isn’t quite what happens. The Higgs boson allows some particles to have mass. The Higgs boson does not explain the mass that comes from binding energies (for example, most of the mass of the proton) and it does not explain the mass associated with dark matter. If the Higgs boson is discovered it will complete the Standard Model of physics, but it will not complete our picture of the universe. There will still be many unanswered questions.

What would a discovery look like?

In order to claim a discovery an experiment would need to see a 5 sigma excess over the expected background. A sigma is a measure of uncertainty, and the chance of seeing a 5 sigma excess due to statistical fluctuations is about 1 in 3 million. If both experiments see an excess of 5 sigma in the same region the chances that this is due to a fluctuation is 1 in 9 million million!

The experiments produce “Brazil plots”, which show what they expect to see if there is no Higgs, and compare it to what they actually see. The green band shows 1 sigma deviations, the yellow bands show 2 sigma deviations, and then you have to use your imagination to see the remaining bands, and colors. When the green and yellow bands pass below the SM=1 line, and the central black line does too, then the Higgs is excluded in that region to 95% confidence. If the black line stays above the SM=1 line then we haven’t excluded the Higgs boson in that region yet. So when the green and yellow bands fall far below the SM=1 line, but the black line stays above or at the SM=1 line then we accumulate evidence for a Higgs boson.

How do we search for the Higgs boson?

The search for the Higgs boson depends on its mass. At high mass it can decay to heavy particles with clean signatures, so the high mass region was the first region to see an exclusion. At very high mass the width of the Higgs boson is large, so the events get spread out over a large range, so the searches take a little longer. At low mass the decays get very messy, so we have to pick our decay modes carefully. The cleanest modes are the two photon mode (often called gamma gamma), the ZZ* mode and the WW* mode. Of these three, the gamma gamma and ZZ* modes are the most sensitive, so we can expect to see these presented tomorrow.

The data are collected that the detectors and stored to disk, and the physicists spend their time analyzing the data. This is a slow process, full of potential pitfalls, so the internal review process is long and stringent. This is one of the reasons why we need two experiments, so that they can check each other’s findings. The experiments at Tevatron have already presented their results and they see an excess in the same region. This is vital because they are sensitive to different final states, so between the Tevatron and the LHC we have all the analyses covered.

For each analysis there are two kinds of background, the “reducible” backgrounds where particles fake the particles we are looking for (for example, a high energy electron can look just like a high energy photon) and the “irreducible” backgrounds where particles are the same kind as the ones we are looking for. So when you see plots showing the gamma gamma searches, you can expect to see four categories: gamma gamma (irreducible Standard Model background), jet gamma, jet jet, and “other”. As we make more and more stringent requirements to eliminate these backgrounds we also lose signal events, so we have trade off background rejection against signal acceptance.

On top of all these problems we also have to take reconstruction and acceptance into account. We cannot record every event, so we pick and choose events based on how interesting they look. Does an event have two high energy photon candidates? If so, record it. Does an event have four leptons in the signal state? If so, record it. These trigger decisions are affected by definitions of “high energy”, by the algorithms we use, and by the coverage of the detectors. We have to take all of these biases into account with systematic uncertainties, and these can dominate for some of the searches.

When we put all this together we end up asking some simple questions: “How many background events do we expect?” “How many events do we see in data?” “What is the total uncertainty on the background and signal?” “How many signal events do we think we see?” “How much larger is this than the uncertainty?” This then gives us the “n sigma” for that mode across the mass range. We combine these sigmas within a single experiment, taking correlated uncertainties into account, and that’s how we get our Brazil plots.

How likely is a discovery?

In 2011 we had about \(5fb^{-1}\) of luminosity and we saw about 3 sigma for each experiment. In 2012 we had about \(6.5fb^{-1}\) of luminosity at slightly higher energy (giving a factor of 1.25). So we can work out what to expect for 2012 sensitivity- just take the 3 sigma and add it in quadrature to \((\sqrt{1.25\times 6.5/5})\times 3\) sigma and that comes out at 4.9 sigma. If we’re lucky one or more experiments might see more than 5 sigma, meaning we could have a discovery!

What next for the Higgs?

If we make a discovery, either now or in the coming weeks, then we need to measure the properties of the new particle. We can’t claim to have discovered the Standard Model Higgs boson until we’ve measured its branching fractions and spin. Fortunately, if the Higgs boson is at 125GeV then we have a rich variety of decay modes, and this could give us insights into all kinds of interesting measurements, such as the quark masses.

Now go and enjoy the seminar!

Learn more about the Higgs

What comes next? (Richard Ruiz)

How difficult is it find the Higgs? (Richard Ruiz)

Why do we expect to find a Higgs boson? Part I Electroweak Symmetry Breaking (Flip Tanedo)

Why do we expect a Higgs boson? Part II Unitarization of Vector Boson Scattering (Flip Tanedo)

(Video) What is a Higgs boson? (Dom Lincoln)

(Video) Higgs boson – Latest update (Dom Lincoln)

Share

Tags: , , , , , , ,