I’ve had a busy few weeks after getting back from America, so apologies for the lack of blogging! Some things I’ve been up to:
– Presenting my work on LUX to MPs at the Houses of Parliament for the SET for Britain competition. No prizes, but lots of interesting questions from MPs, for example: “and what can you do with dark matter once you find it?”. I think he was looking for monetary gain, so perhaps I should have claimed dark matter will be the zero-carbon fuel of the future!
– Supplementing my lowly salary by marking an enormous pile of undergraduate problem sheets and by participating in paid eye-tracking studies for both the UCL psychology department and a marketing company
– The usual work on analysing LUX data and trying to improve our sensitivity to low mass dark matter.
And on Saturday, I will be on a panel of “experts” (how this has happened I don’t know) giving a talk as part of the UCL Your Universe festival. The discussion is aptly titled “Light into the Dark: Mystery of the Invisible Universe”, and if you’re in London and interested in this sort of thing, you should come along. Free tickets are available here.
I will hopefully be back to posting more regularly now, but first, a bit of promotion!
Symmetry Magazine are running a competition to find “which physics machine will reign supreme” and you can vote right here.
The first round matches LUX with the LHC, and considering we are a collaboration of just over 100 (compared to CERN’s thousands of scientists) with nothing like the media coverage the LHC gets, we’re feeling like a bit of an underdog.
But you can’t just vote for us because we’re an underdog, so here are some reasons you should #voteLUX:
-For spin-dependent WIMP-nucleon scattering for WIMPs above ~8GeV, LUX is 10,000x more sensitive than the LHC (see figure below).
-LUX cost millions of dollars, the LHC cost billions.
-It’s possible to have an understanding of how LUX works in its entirety. The LHC is too big and has too many detectors for that!
-The LHC is 175m underground. LUX is 1,478m underground, over 8x deeper, and so is much better shielded from cosmic rays.
-The LHC has encountered problems both times it has tried to start up. LUX is running smoothly right now!
-I actually feel kind of bad now, because I like the LHC, so I will stop.

Dark matter sensitivity limits, comparing LHC results to LUX in red. The x axis is the mass of the dark matter particle, and the y axis is its interaction probability. The smaller this number, the greater the sensitivity.
Anyway, if you fancy giving the world’s most sensitive dark matter detector a hint of a chance in it’s battle against the behemoth LHC, vote LUX. Let’s beat the system!