• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Steven Goldfarb | University of Michigan |

Read Bio

The Problem with B.o.B. – Science and the flat earth

Wednesday, February 10th, 2016
B.o.B.

Rap musician, B.o.B. (Image: Frazer Harrison/Getty Images for BMI)

Is the world flat?

That question was posed by popular rap musician B.o.B. on his Twitter account this past week, prompting angry, but comical video and rap responses by popular science communicator Neil deGrasse Tyson and his musician nephew.

What do we really know?

A few thousand years ago, Greek philosophers and Phoenician explorers began to cast doubt on the flat-earth model. They noted differences in star visibility and the sun’s trajectory that depended on the observer’s location, leading them to propose the earth was a sphere. Convinced by this data, as well as the roundness of earth’s shadow cast on the moon during a lunar eclipse, the Greek astronomer Eratosthenes went a step further to estimate the earth’s circumference in 240 BCE. Using trigonometry and shadows cast during the solstice, he came to within a few percent of the actual value. Not bad.

Eratosthenes method for measuring the size of the earth

Image: National Geodetic Survey NOAA, Public Domain.

Evidence backing the round-earth model grew through time and was sufficient five centuries ago to convince sailors they would not fall off earth’s edges. Magellan was the first we know of to circumnavigate the globe and to live to tell about it. Even more convincing were the famous earthrise photos sent down from lunar orbit a few hundred years later. The evidence is overwhelming. So, what’s up with B.o.B.?

Yesterday evening, I had the privilege to discuss the science of the Large Hadron Collider at CERN with a group of 13 and 14 year-olds from Seward, Alaska, USA. They connected via the ATLAS Virtual Visit system to see the experiment and to ask questions about our research. As usual, there were a lot of excellent questions, and fellow CMS physicist, Dave Barney, and I did our best to answer them all.  Then we got to:

“How do you understand things you can’t see?”

Only youth can ask a question so profound.

This started me thinking about our friend B.o.B., and it occurred to me that his skepticism is not so different from that of the student nor even of the scientists at CERN who hunted for the Higgs boson.

More than fifty years ago, an idea was formed by a group of theorists, including François Englert, Robert Brout, and Peter Higgs, essentially describing how fundamental particles attain mass. The proposed mechanism requires the existence of a pervasive, non-directional (we call it scalar) force field and its associated particle, now known as the Higgs boson. It became central to a new theory, called the Standard Model, used by physicists to describe the fundamental particles that make up matter and the forces that act upon them.

Apollo8-Earthrise

Earthrise from moon, shot by astronauts orbiting in Apollo 8 capsule. Image: NASA

The Standard Model, much like the round-earth model, proved itself over time. Just as sailors bet their lives that the earth was a sphere before seeing photos from space, physicists included the Higgs field in their theory and were able to make accurate predictions of the existence (and even the mass) of new particles before seeing images of the Higgs boson. But, we still asked:

Does the Higgs boson exist?

Yes, the empirical evidence was convincing, but just like Magellan, the astronauts, and B.o.B., we scientists wanted our photos. These finally came in 2012, in the form of high-energy proton collisions in the ATLAS and CMS detectors at CERN. Yes, there is something reassuring in seeing it with our own eyes (or detectors).

So, what’s the problem with B.o.B.? If scientists, explorers, and students have the right to be skeptical, why not a musician?

I don’t think Neil deGrasse Tyson is complaining that B.o.B. posed a question. Skepticism is key to the scientific process and questions should be asked. It is far better to ask questions than it is to blindly believe the authoritative figures who present “facts”. If you have doubts, by all means, ask!

Higgs Boson, ATLAS, Physics Events

Candidate Higgs boson decay to 2 photons. Image: ATLAS Experiment © 2011 CERN, CC-BY-SA-4.0

But, B.o.B. went further. He presented a theory (in this case, a very old one) as fact. And he did this without any serious evidence to back it up. This is irresponsible for anyone, but especially for someone who is seen as an authoritative figure by his fans, and moreover for someone who has the means and ability to know better.

We can take comfort in the fact that science is based on uncovering the truth and that truth ultimately reveals itself. But human progress depends on our ability to build upon well-established bricks of knowledge. Sure, we should check the solidity of those bricks from time to time, but let’s not waste effort trying to break them for no good reason.

As a physicist, I am often challenged by friends and family to explain the relevance of our work. So, when the opportunity came last fall to speak at TEDxTUM in Munich, I happily responded to that very question with a simple answer: We have no choice. Human survival depends on basic research. Without our drive to explore and to understand the world, our species would not still be here. We would have starved, been eaten, or died of disease, a long time ago. Hence the threat of B.o.B.

And B.o.B. is not alone.

Powerful people who would like to be world leaders are acting similarly or worse, attacking evidence-based science for the sake of political gain. And while a flat-earth conspiracy might be innocuous or even silly, those who deny important measurements, such as those of climate change, threaten our survival much more directly.

So, when scientists react to B.o.B. with words, images, or even song, they are not just defending their turf, they are expressing primal instincts. They are defending our species. And when individuals like B.o.B. threaten human survival, I suggest they watch their back. They might just get pushed off the edge of the earth.

A question of survival: Why we hunted the Higgs. (Video: TEDxTUM)

Share

The Ties That Bind

Sunday, January 18th, 2015
Cleaning the ATLAS Experiment

Beneath the ATLAS detector – note the well-placed cable ties. IMAGE: Claudia Marcelloni, ATLAS Experiment © 2014 CERN.

A few weeks ago, I found myself in one of the most beautiful places on earth: wedged between a metallic cable tray and a row of dusty cooling pipes at the bottom of Sector 13 of the ATLAS Detector at CERN. My wrists were scratched from hard plastic cable ties, I had an industrial vacuum strapped to my back, and my only light came from a battery powered LED fastened to the front of my helmet. It was beautiful.

The ATLAS Detector is one of the largest, most complex scientific instruments ever constructed. It is 46 meters long, 26 meters high, and sits 80 metres underground, completely surrounding one of four points on the Large Hadron Collider (LHC), where proton beams are brought together to collide at high energies.  It is designed to capture remnants of the collisions, which appear in the form of particle tracks and energy deposits in its active components. Information from these remnants allows us to reconstruct properties of the collisions and, in doing so, to improve our understanding of the basic building blocks and forces of nature.

On that particular day, a few dozen of my colleagues and I were weaving our way through the detector, removing dirt and stray objects that had accumulated during the previous two years. The LHC had been shut down during that time, in order to upgrade the accelerator and prepare its detectors for proton collisions at higher energy. ATLAS is constructed around a set of very large, powerful magnets, designed to curve charged particles coming from the collisions, allowing us to precisely measure their momenta. Any metallic objects left in the detector risk turning into fast-moving projectiles when the magnets are powered up, so it was important for us to do a good job.

ATLAS Big Wheel

ATLAS is divided into 16 phi sectors with #13 at the bottom. IMAGE: Steven Goldfarb, ATLAS Experiment © 2014 CERN

The significance of the task, however, did not prevent my eyes from taking in the wonder of the beauty around me. ATLAS is shaped somewhat like a large barrel. For reference in construction, software, and physics analysis, we divide the angle around the beam axis, phi, into 16 sectors. Sector 13 is the lucky sector at the very bottom of the detector, which is where I found myself that morning. And I was right at ground zero, directly under the point of collision.

To get to that spot, I had to pass through a myriad of detector hardware, electronics, cables, and cooling pipes. One of the most striking aspects of the scenery is the ironic juxtaposition of construction-grade machinery, including built-in ladders and scaffolding, with delicate, highly sensitive detector components, some of which make positional measurements to micron (thousandth of a millimetre) precision. All of this is held in place by kilometres of cable trays, fixings, and what appear to be millions of plastic (sometimes sharp) cable ties.

Inside the ATLAS Detector

Scaffolding and ladder mounted inside the precision muon spectrometer. IMAGE: Steven Goldfarb, ATLAS Experiment © 2014 CERN.

The real beauty lies not in the parts themselves, but rather in the magnificent stories of international cooperation and collaboration that they tell. The cable tie that scratched my wrist secures a cable that was installed by an Iranian student from a Canadian university. Its purpose is to carry data from electronics designed in Germany, attached to a detector built in the USA and installed by a Russian technician.  On the other end, a Japanese readout system brings the data to a trigger designed in Australia, following the plans of a Moroccan scientist. The filtered data is processed by software written in Sweden following the plans of a French physicist at a Dutch laboratory, and then distributed by grid middleware designed by a Brazilian student at CERN. This allows the data to be analyzed by a Chinese physicist in Argentina working in a group chaired by an Israeli researcher and overseen by a British coordinator.  And what about the cable tie?  No idea, but that doesn’t take away from its beauty.

There are 178 institutions from 38 different countries participating in the ATLAS Experiment, which is only the beginning.  When one considers the international make-up of each of the institutions, it would be safe to claim that well over 100 countries from all corners of the globe are represented in the collaboration.  While this rich diversity is a wonderful story, the real beauty lies in the commonality.

All of the scientists, with their diverse social, cultural and linguistic backgrounds, share a common goal: a commitment to the success of the experiment. The plastic cable tie might scratch, but it is tight and well placed; its cable is held correctly and the data are delivered, as expected. This enormous, complex enterprise works because the researchers who built it are driven by the essential nature of the mission: to improve our understanding of the world we live in. We share a common dedication to the future, we know it depends on research like this, and we are thrilled to be a part of it.

ATLAS Collaboration Members

ATLAS Collaboration members in discussion. What discoveries are in store this year? IMAGE: Claudia Marcelloni, ATLAS Experiment © 2008 CERN.

This spring, the LHC will restart at an energy level higher than any accelerator has ever achieved before. This will allow the researchers from ATLAS, as well as the thousands of other physicists from partner experiments sharing the accelerator, to explore the fundamental components of our universe in more detail than ever before. These scientists share a common dream of discovery that will manifest itself in the excitement of the coming months. Whether or not that discovery comes this year or some time in the future, Sector 13 of the ATLAS detector reflects all the beauty of that dream.

Share