• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘antineutrinos’

Hauptgebäude1

“Nous posons des questions depuis 1365”. Cette déclaration inspirante accrochée près de son imposant portail d’entrée, marque le 650ième anniversaire de l’Université de Vienne. Cette bannière accueillait ce matin les 730 physiciens et physiciennes venu assister à la principale conférence de physique des particules de l’année organisée par la Société Européenne de Physique. Pendant une semaine, les participants et participantes devront choisir parmi des centaines de présentations où on fera le tour des connaissances actuelles en physique des particules et des nouvelles avenues avancées. Première énorme surprise : le thermomètre affichait 39˚C hier, la plus haute température jamais enregistrée à Vienne.

Déjà, la première journée comportait son lot de résultats récents et excitants. Tel qu’annoncé la semaine dernière, la collaboration LHCb du CERN a découvert les tous premiers pentaquarks, des particules composées de cinq quarks. Les quarks sont quelques uns des grains de matière fondamentaux. Les physiciens et physiciennes observent déjà depuis des décennies des dizaines de particules faites de deux ou trois quarks. Par exemple, plusieurs particules sont faites d’une paire de quark et d’antiquark. D’autres particules, comme les protons et les neutrons, contiennent trois quarks. Tout récemment, quelques groupes expérimentaux avaient aussi rapporté la découverte de tétraquarks, des objets composés de quatre quarks. Et finalement, la semaine dernière, grâce à l’énorme quantité de données rendues disponibles par le Grand Collisionneur de Hadrons, ou LHC, les scientifiques de l’expérience LHCb ont fièrement annoncé la découverte de pentaquarks. Ils et elles ont ainsi pu réaliser ce que beaucoup d’autres groupes avaient en vain essayé de faire pendant des décennies. On s’attendait à leur existence, mais ils n’avaient jamais été observés auparavant. Ce qui prouve bien qu’il nous reste encore beaucoup à découvrir et à comprendre.

Autre belle nouvelle: l’expérience de neutrinos T2K, qui se déroule au Japon, a peut-être détecté les premiers signes d’oscillations d’antineutrinos. On connaît à ce jour trois types de neutrinos, chacun accompagnant sa propre particule, soit l’électron, le muon ou le tau. Le processus d’oscillation décrit comment des neutrinos d’un type particulier peuvent se changer en un autre type de neutrinos.  Ce phénomène a déjà été observé pour les neutrinos, mais ce serait une première avec les antineutrinos. Mais tout est loin d’être clair, au contraire. D’abord, l’équipe de T2K n’a que trois petits évènements à se mettre sous la dent et il n’y a encore aucune certitude qu’on ait bel et bien affaire à des antineutrinos et non pas des neutrinos. Il faudra encore attendre une année ou deux avant que suffisamment d’évènements soient accumulés pour qu’on puisse en avoir le cœur net. Mais si c’était le cas, cela nous en apprendrait davantage sur les similitudes ou différences entre matière et antimatière.

Plusieurs expériences essaient aussi d’établir s’il n’existerait pas un autre type de neutrinos, appelés neutrinos stériles, dont le spin serait l’inverse des autres neutrinos, c’est-à-dire qu’ils tourneraient sur eux-mêmes dans le sens inverse des neutrinos habituels. Bien sûr, toute découverte de nouvelles particule est à suivre. Mais la confirmation de l’existence de neutrinos stériles tout particulièrement. Cela enverrait une onde de choc en physique des particules car ce serait une observation directe d’une physique nouvelle bien plus vaste que le Modèle Standard actuel. Il faudrait alors tout revoir. Et qui sait? Les physiciens et physiciennes pourraient bien avoir de quoi continuer à se poser des questions pendant les 650 années à venir…

Pauline Gagnon

Pour recevoir un avis lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution ou consultez mon site web

Share

This story first appeared as a press release on Interactions.org, issued by Brookhaven National Laboratory, the Institute of High Energy Physics, and Lawrence Berkeley National Laboratory. For the full version and contact information, go here.

The Daya Bay Reactor Neutrino Experiment has begun its quest to answer some of the most puzzling questions about the elusive elementary particles known as neutrinos. The experiment’s first completed set of twin detectors is now recording interactions of antineutrinos (antipartners of neutrinos) as they travel away from the powerful reactors of the China Guangdong Nuclear Power Group in southern China.

Neutrinos are uncharged particles produced in nuclear reactions, such as in the sun, by cosmic rays, and in nuclear power plants. They come in three types or “flavors” — electron, muon, and tau neutrinos — that morph, or oscillate, from one form to another, interacting hardly at all as they travel through space and matter, including people, buildings, and planets like Earth.

The start-up of the Daya Bay experiment marks the first step in the international effort of the Daya Bay Collaboration to measure a crucial quantity related to the third type of oscillation, in which the electron-flavored neutrinos morph into the other two flavored neutrinos. (more…)

Share