• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘astronomy’

DECam’s nearby discoveries

Monday, February 2nd, 2015

This article appeared in symmetry on Jan. 22, 2015.

The Dark Energy Camera does more than its name would lead you to believe. Image courtesy of NOAO

The Dark Energy Camera does more than its name would lead you to believe. Image courtesy of NOAO

The Dark Energy Camera, or DECam, peers deep into space from its mount on the 4-meter Victor Blanco Telescope high in the Chilean Andes.

Thirty percent of the camera’s observing time—about 105 nights per year—go to the team that built it: scientists working on the Dark Energy Survey.

Another small percentage of the year is spent on maintenance and upgrades to the telescope. So who else gets to use DECam? Dozens of other projects share its remaining time.

Many of them study objects far across the cosmos, but five of them investigate ones closer to home.

Overall, these five groups take up just 20 percent of the available time, but they’ve already taught us some interesting things about our planetary neighborhood and promise to tell us more in the future.

Far-out asteroids

Stony Brook University’s Aren Heinze and the University of Western Ontario’s Stanimir Metchev used DECam for four nights in early 2014 to search for unknown members of our solar system’s main asteroid belt, which sits between Mars and Jupiter.

To detect such faint objects, one needs to take a long exposure. However, the paths of these asteroids lie close enough to Earth that taking an exposure longer than a few minutes results in blurred images. Heinze and Metchev’s fix was to stack more than 100 images taken in less than two minutes each.

With this method, the team expects to measure the positions, motions and brightnesses of hundreds of main belt asteroids not seen before. They plan to release their survey results in late 2015, and an early partial analysis indicates they’ve already found hundreds of asteroids in a region smaller than DECam’s field of view—about 20 times the area of the full moon.

Whole new worlds

Scott Sheppard of the Carnegie Institution for Science in Washington DC and Chad Trujillo of Gemini Observatory in Hilo, Hawaii, use DECam to look for distant denizens of our solar system. The scientists have imaged the sky for two five-night stretches every year since November 2012.

Every night, the DECam’s sensitive 570-megapixel eye captures images of an area of sky totaling about 200 to 250 times the area of the full moon, returning to each field of view three times. Sheppard and Trujillo run the images from each night through software that tags everything that moves.

“We have to verify everything by eye,” Sheppard says. So they look through about 60 images a night, or 300 total from a perfect five-night observing run, a process that gives them a few dozen objects to study at Carnegie’s Magellan Telescope.

The scientists want to find worlds beyond Pluto and its brethren—a region called the Kuiper Belt, which lies some 30 to 50 astronomical units from the sun (compared to the Earth’s 1). On their first observing run, they caught one.

This new world, with the catalog name of 2012 VP113, comes as close as 80 astronomical units from the sun and journeys as far as 450. Along with Sedna, a minor planet discovered a decade ago, it is one of just two objects found in what was once thought of as a complete no man’s land.

Sheppard and Trujillo also have discovered another dwarf planet that is one of the top 10 brightest objects beyond Neptune, a new comet, and an asteroid that occasionally sprouts an unexpected tail of dust.

Mythical creatures

Northern Arizona University’s David Trilling and colleagues used the DECam for three nights in 2014 to look for “centaurs”—so called because they have characteristics of both asteroids and comets. Astronomers believe centaurs could be lost Kuiper Belt objects that now lie between Jupiter and Neptune.

Trilling’s team expects to find about 50 centaurs in a wide range of sizes. Because centaurs are nearer to the sun than Kuiper Belt objects, they are brighter and thus easier to observe. The scientists hope to learn more about the size distribution of Kuiper Belt objects by studying the sizes of centaurs. The group recently completed its observations and plan to report them later in 2015.

Next-door neighbors

Lori Allen of the National Optical Astronomy Observatory outside Tucson, Arizona, and her colleagues are looking for objects closer than 1.3 astronomical units from the sun. These near-Earth objects have orbits that can cross Earth’s—creating the potential for collision.

Allen’s team specializes in some of the least-studied NEOs: ones smaller than 50 meters across.

Even small NEOs can be destructive, as demonstrated by the February 2013 NEO that exploded above Chelyabinsk, Russia. The space rock was just 20 meters wide, but the shockwave from its blast shattered windows, which caused injuries to more than 1000 people.

In 2014, Allen’s team used the DECam for 10 nights. They have 20 more nights to use in 2015 and 2016.

They have yet to release specific findings from the survey’s first year, but the researchers say they have a handle of the distribution of NEOs down to just 10 meters wide. They also expect to discover about 100 NEOs the size of the one that exploded above Chelyabinsk.

Space waste

Most surveys looking for “space junk”—inactive satellites, parts of spacecraft and the like in orbit around the Earth—can see only pieces larger than about 20 centimeters. But there’s a lot more material out there.

How much is a question Patrick Seitzer of the University of Michigan and colleagues hope to answer. They used DECam to hunt for debris smaller than 10 centimeters, or the size of a smartphone, in geosynchronous orbit.

The astronomers need to capture at least four images of each piece of debris to determine its position, motion and brightness. This can tell them about the risk from small debris to satellites in geosynchronous orbit. Their results are scheduled for release in mid-2015.

Liz Kruesi

Share

There are many unexpected perks of being a physics graduate student and having, how should I put it, a “graduate student work schedule.” One of my favorites is when I go home for the night (or morning?). Every time I walk through my department’s doors  I am greeted by what has become a familiar sight:

Jupiter (2011 Nov 10) Post first snow[Image: Mine]

Do you see it? Look carefully. How about now?

[Image: Mine]

Do you see the little dot? That, my dear friends, is a planet. It is sitting over 373 million miles (601 millions kilometers) away from us but I can see it with my naked eye, from the steps of my department, through my phone’s camera lens! However, 373 million miles is no small distance, it is about 4 times the distance between here and our Sun. That distance is so large it takes about 35 minutes for light shining off the planet to reach us compared to the 8 minutes it takes for light from the sun to reach us. As small as it looks, that pale white dot is over 1300 times the size of this rock we call home, yet it is still only 1/1000th the size of the sun. Do not let this fool you, though. Jupiter can hold its own when it comes to causing the sun to wobble off its axis. Its largest moon alone is 25% larger than the planet Mercury and even twice the mass of our moon.

Before I get carried away, let’s take a step back:

[Image: NASA’s Juno Mission]

Sorry, by a step I meant 6 million miles (9.66 million kilometers). This image was taken in August by Nasa’s new Juno satellite, en route to a cozy spot orbiting Jupiter, and tasked with studying the gas giant. By the way, that not-so-pale dot on the left is Earth. You and I both have a about 50% chance of being in the photo. That smaller, pixel-sized object is our moon. 🙂

If you want to see a really pale blue dot, here is a classic:

[Image: NASA’s Voyager I Mission]

Tucked away in that right-most ban is a small, sub-pixel dot. That is us, again. This real photo was taken by NASA’s Voyager 1 satellite back in 1990. Not impressed? Well consider this: the photo was approximately taken here (green band):

[Image: Wikimedia]

Voyager was around 3.7 billion miles (6 billion kilometers) away from the Earth when the photo was taken. That is just under 40 times the distance between us and the sun. Currently, Voyager I is about three times as far (11 billion miles /17.9 billion kilometers).

And to think, here we are on this quaint little planet, in this nice little spot under the sun, surrounded by neighbors (by neighbors, I mean neighboring star systems), tucked away into a little arm in the Milky Way Galaxy.

[Image: Wikimedia]

You know what? That is our galaxy. We live there; it’s home. Think of that feeling you get when you visit your hometown after having been gone for so long. It is the beginning of the holiday, so it should not be too difficult to conjure up that little tingle. In that spiral arm of our galactic city is the neighborhood where we all grew up. It may be just another star system, but to us it’s that place with all the holes in the wall. If some visitor from another galaxy asked us where to go for a little sun, we of course point to Mercury. Where are the best active volcanoes for those die-hard climbers? If you like warm temperatures, I say Venus; if you like things cold, check our Neptune. If you are hungry, go to Earth – no questions there.

Jupiter (2011 Nov 10) Post second snow[Image: Mine]

At the end of a long day, it is always nice thinking about how big this place is. We humans are really just a small speck in all of the cosmos; however, that just means there is so much more out there worth studying and exploring. Sure, my research is probably only be a small cog in the grand scope of things but it has its place. I find it incomprehensible by just how comprehensible the Universe it, but I suppose that is what makes being a scientist so exciting.

This last picture is another shot of Jupiter taken about 23 hours after the first one and just hours after Madison’s first snow of the season.

 

Happy Colliding.

– richard (@bravelittlemuon)

P.S. If you have any photos of your favorite stars or planets, send them my way (rruiz AT hep DOT wisc DOT edu). I am happy to post a few up them on here. The only condition is that they be your own work and not pulled from some  APOD database. Unless you actually are an astronomer and had some Hubble time, then that totally counts. 😀

 

Share

Top left image shows SDSS-III's view of a small part of the sky, centered on the galaxy Messier 33. The middle top picture is a zoomed-in image on M33, showing the spiral arms of this galaxy, including the blue knots of intense star formation. The top right-hand image shows a further zoomed-in image of M33 highlighting one of the largest areas of intense star formation in that galaxy. Credit: SDSS

The world’s largest, digital, color image of the night sky became public this month. It provides a stunning image and research fodder for scientists and science enthusiasts, thanks to the Sloan Digital Sky Survey, which has a long connection to Fermilab.

Oh, yeah, and the image is  free.

The image, which would require 500,000 high-definition TVs to view in its full resolution, is comprised of data collected since the start of the survey in 1998.

“This image provides opportunities for many new scientific  discoveries in the years to come,” said Bob Nichol, SDSS-III scientific spokesperson and professor at University of Portsmouth.

Fermilab oversaw all image processing and distribution of data to researchers and the public from 1998 through 2008, for the first seven batches of data. These batches make up a large chunk of the ground-breaking more than a trillion-pixel image. The eighth batch of raw, reduced data, which was released along with the image at the 17th annual meeting of the American Astronomical Society in Seattle was processed by Lawrence Berkley National Laboratory. LBNL, New York University and Johns Hopkins University distributed that data. Fermilab’s SDSS collaboration members now focus solely on analysis.

“This is one of the biggest bounties in the history of science,” said Mike Blanton, professor from New York University and leader of the data archive work in SDSS-III, the third phase of SDSS.  “This data will be a legacy for the ages, as previous ambitious sky surveys like the Palomar Sky Survey of the 1950s are still being used today. We expect the SDSS data to have that sort of shelf life.”

The release expands the sky coverage of SDSS to include a  sizable view of the south galactic pole. Previously, SDSS only imaged small, spread out slivers of the southern sky. Increasing coverage of the southern sky will aid the Dark Energy Survey and the Large Synoptic Survey Telescope both southern sky surveys that Fermilab participates in.

Comparing the two portions of the sky also will help astrophysicists pinpoint any asymmetries in the type or number of large structures, such as galaxies. Cosmic-scale solutions to Albert Einstein’s equations of general
relativity assume that the universe is spherically symmetric, meaning that on a large enough scale, the universe would look the same in every direction.

Finding asymmetry would mean the current understanding of the universe is wrong and turn the study of cosmology on its head, much as the discovery of particles not included in the Standard Model would do for collider physics.

“We would have to rethink our understanding of cosmology,” said Brian Yanny, Fermilab’s lead scientists on SDSS-III. So far the universe seems symmetric.

Whether the SDSS data reveals asymmetry or not it undoubtedly will continue to provide valuable insight into our universe and fascinate amateur astronomers and researchers.

Every year since the start of the survey, at least one paper about the SDSS has made it in the list of the top 10 astronomy papers of the year. More than 200,000 people have classified galaxies from their home computers using SDSS data and projects including Galaxy Zoo and Galaxy Zoo 2.

In the three months leading up to the image’s release a record number of queries, akin to click counts on a Web page,  occurred on the seventh batch of data. During that time, 90 terabytes of pictures and sky catalogues were down loaded by  scientists and the public. That equates to about 150,000 one-hour long CDs.

Scientists will continue to use the old data and produce papers from it for years to come. Early data also works as a check on the new data to make sure camera or processing flaws didn’t produce data anomalies.

“We still see, for instance, data release six gets considerable hits and papers still come out on that in 100s per year,” Yanny said.

So far, SDSS data has been used to discover nearly half a billion astronomical objects, including asteroids, stars, galaxies and distant quasars. This new  eighth batch of data promises even more discoveries.

Fermilab passed the job of data processing and distribution on to others in 2008. The eight batch of data was processed by Lawrence Berkley National Laboratory and distributed by LBNL, New York University and Johns Hopkins University.

Fermilab’s four remaining SDSS collaboration members now focuses solely

illustration of the concept of baryon acoustic oscillations, which are imprinted in the early universe and can still be seen today in galaxy surveys like BOSS. Credit: Chris Blake and Sam Moorfield and SDSS.

on analysis. They are expected to produce a couple dozen papers during the next few years. The group touches on all of SDSS-III’s four sky surveys but focus mainly on the Baryon Oscillation Spectroscopic Survey, or BOSS, which will map the 3-D distribution of 1.5 million luminous red galaxies.

“BOSS is closest to our scientists’ interests because its science goals are to understand dark energy and dark matter and the evolution of the universe,” Yanny said.

For more information see the following:

* Larger images of the SDSS maps in the northern and southern galactic hemispheres are available here and here.

*Sloan’s YouTube channel provides a 3-D visualization of the universe.

*Technical journal papers describing DR8
and the SDSS-III project can be found on the arXiv e-Print server.

*EarthSky has a good explanation of what the colors in the images represent and how SDSS part of an on-going tradition of sky surveys.

*The Guardian newspaper has a nice article explaining all the detail that can be seen in the image.

— Tona Kunz

Share