• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Posts Tagged ‘Byron Jennings’

– By Byron Jennings, (Ex) Theorist (or is it: once a theorist, always a theorist…) and Project Coordinator

Thomas Kuhn (1922 – 1996) began his career as a physicist but then, as a post-doc, went over to the dark side and became a philosopher. It is for his work on the dark side that he became famous. Normally one assumes that when a scientist starts doing philosophy it is a sign of senility, but in his case it was too early in his career and his insights were actually useful (Yes, philosophy can be useful). His main contribution, in my opinion, was his introduction of the idea of the paradigm. A paradigm is the set of interlocking assumptions and methodologies that define a field of study. It provides the foundation for all work in the field and a common language for discourse. It is the fundamental model for the field and in historical studies is sometimes referred to as the controlling narrative.

If you’ve ever heard the phrase ‘paradigm change,’ you would think that all paradigms do is change. But the idea of the paradigm is actually subversive – it helped undermine the “received view” of what science is and still undermines experimentalist’s attempts to eliminate theory (Which can’t be done, by the way!). Full disclosure: I am, or rather was, a theorist. Administration is even farther to the dark side than philosophy.

The concept of paradigm was introduced in contradistinction to the ideas of positivism that defined the “received view”. The positivists tried to work directly with observations and eliminate all metaphysics or model dependence. Kuhn, on the other hand, claimed the observations themselves are theory laden or model dependent.  You cannot, as a matter of principle, eliminate the metaphysics because the observation, or at least their interpretation, depends on the theory, model, or paradigm.  The paradigm sets the frameworks that gives meaning to the observations and frames the very questions that are considered worthy of addressing.  Examples of paradigms would be Aristotelian physics, classical physics, the standard model of particle physics, or the modern synthesis of evolution.

While paradigms do more than change but they do indeed change and when they do all—oops I cannot say that!—all heck breaks loose. Things one thought one knew and could rely on suddenly go poof. This going ‘poof’ was what the positivists tried and failed to get around by eliminating the models and working directly with the observations.

As Einstein (I like name dropping) pointed out, when paradigms change, it tends to be the most central parts of the previous paradigm that are eliminated. In Aristotelian physics, it was the fixed earth and the perfect heavens that Galileo destroyed with his telescope. Classical mechanics is built on Euclidean three-dimensional space and well-defined trajectories. Special and general relativity eliminated Euclidean geometry, and string theory, if correct, means space is not three-dimensional. Quantum mechanics eliminated the well-defined trajectories. This still causes some people sleepless nights but does not bother me since most of the time I do not know where I am or where I am going anyway. Evolution wrecked havoc with the concept of species. Before continental drift was accepted, a central concept of geology was the fixed continents. The examples are endless.

A side effect of this is that one cannot depend on the contents of the present theories or models to have any direct connection with reality.  The ether (electromagnetism), caloric (heat), phlogiston (fire), and mal air (medicine) that at one time were essential parts of the understanding of how the universe works were eliminated by new improved models. There is no guarantee that the contents of the current models will not be similarly eliminated.  Maybe we will find quarks disappearing or more likely, time, since it is apparently more fundamental.

So what is science and what is it good for if the basic concepts keep changing?  Well now, that is a good question.

 

– to be continued –

 

Share