• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USA

Latest Posts

Posts Tagged ‘Holometer’

This article appeared in Fermilab Today on Thursday, April 9.

The Holometer is sensitive to high-frequency gravitational waves, allowing it to look for events such as cosmic strings. Photo: Reidar Hahn

The Holometer is sensitive to high-frequency gravitational waves, allowing it to look for events such as cosmic strings. Photo: Reidar Hahn

Imagine an instrument that can measure motions a billion times smaller than an atom that last a millionth of a second. Fermilab’s Holometer is currently the only machine with the ability to take these very precise measurements of space and time, and recently collected data has improved the limits on theories about exotic objects from the early universe.

Our universe is as mysterious as it is vast. According to Albert Einstein’s theory of general relativity, anything that accelerates creates gravitational waves, which are disturbances in the fabric of space and time that travel at the speed of light and continue infinitely into space. Scientists are trying to measure these possible sources all the way to the beginning of the universe.

The Holometer experiment, based at the Department of Energy’s Fermilab, is sensitive to gravitational waves at frequencies in the range of a million cycles per second. Thus it addresses a spectrum not covered by experiments such as the Laser Interferometer Gravitational-Wave Observatory, which searches for lower-frequency waves to detect massive cosmic events such as colliding black holes and merging neutron stars.

“It’s a huge advance in sensitivity compared to what anyone had done before,” said Craig Hogan, director of the Center for Particle Astrophysics at Fermilab.

This unique sensitivity allows the Holometer to look for exotic sources that could not otherwise be found. These include tiny black holes and cosmic strings, both possible phenomena from the early universe that scientists expect to produce high-frequency gravitational waves. Tiny black holes could be less than a meter across and orbit each other a million times per second; cosmic strings are loops in space-time that vibrate at the speed of light.

The Holometer is composed of two Michelson interferometers that each split a laser beam down two 40-meter arms. The beams reflect off the mirrors at the ends of the arms and travel back to reunite. Passing gravitational waves alter the lengths of the beams’ paths, causing fluctuations in the laser light’s brightness, which physicists can detect.

The Holometer team spent five years building the apparatus and minimizing noise sources to prepare for experimentation. Now the Holometer is taking data continuously, and with an hour’s worth of data, physicists were able to confirm that there are no high-frequency gravitational waves at the magnitude where they were searching.

The absence of a signal provides valuable information about our universe. Although this result does not prove whether the exotic objects exist, it has eliminated the region of the universe where they could be present.

“It means that if there are primordial cosmic string loops or tiny black hole binaries, they have to be far away,” Hogan said. “It puts a limit on how much of that stuff can be out there.”

Detecting these high-frequency gravitational waves is a secondary goal of the Holometer. Its main purpose is to determine whether our universe acts like a 2-D hologram, where information is coded into two-dimensional bits at the Planck scale, a length around ten trillion trillion times smaller than an atom. That investigation is still in progress.

“For me, it’s gratifying to be able to contribute something new to science,” said researcher Bobby Lanza, who recently earned his Ph.D. conducting research on the Holometer. He is the lead author on an upcoming paper about the result. “It’s part of chipping away at the whole picture of the universe.”

Diana Kwon


Costumes to make zombie Einstein proud

Wednesday, October 29th, 2014

This article appeared in symmetry on Oct. 21, 2014.

These physics-themed Halloween costume ideas are sure to entertain—and maybe even educate. Terrifying, we know. Image: Sandbox Studio, Chicago with Corinne Mucha

These physics-themed Halloween costume ideas are sure to entertain—and maybe even educate. Terrifying, we know. Image: Sandbox Studio, Chicago with Corinne Mucha


So you haven’t picked a Halloween costume, and the big night is fast approaching. If you’re looking for something a little funny, a little nerdy and sure to impress fellow physics fans, look no further. We’ve got you covered.

1. Dark energy

This is an active costume, perfect for the party-goer who plans to consume a large quantity of sugar. Suit up in all black or camouflage, then spend your evening squeezing between people and pushing them apart.

Congratulations! You’re dark energy: a mysterious force causing the accelerating expansion of the universe, intriguing in the lab and perplexing on the dance floor.

2. Cosmic inflation

Theory says that a fraction of a second after the big bang, the universe grew exponentially, expanding so that tiny fluctuations were stretched into the seeds of entire galaxies.

But good luck getting that costume through the door.

Instead, take a simple yellow life vest and draw the cosmos on it: stars, planets, asteroids, whatever you fancy. When friends pull on the emergency tab, the universe will grow.

3. Heisenberg Uncertainty Principle

Here’s a great excuse to repurpose your topical Breaking Bad costume from last year.

Walter White—aka “Heisenberg”—may have been a chemistry teacher, but the Heisenberg Uncertainty Principle is straight out of physics. Named after Werner Heisenberg, a German physicist credited with the creation of quantum mechanics, the Heisenberg Uncertainty Principle states that the more accurately you know the position of a particle, the less information you know about its momentum.

Put on Walter White’s signature hat and shades (or his yellow suit and respirator), but then add some uncertainty by pasting Riddler-esque question marks to your outfit.

4. Bad neutrino

A warning upfront: Only the ambitious and downright extroverted should attempt this costume.

Neutrinos are ghostly particles that pass through most matter undetected. In fact, trillions of neutrinos pass through your body every second without your knowledge.

But you aren’t going to go as any old neutrino. Oh no. You’re a bad neutrino—possibly the worst one in the universe—so you run into everything: lampposts, trees, haunted houses and yes, people. Don a simple white sheet and spend the evening interacting with everyone and everything.

5. Your favorite physics experiment

You physics junkies know that there are a lot of experiments with odd acronyms and names that are ripe for Halloween costumes. You can go as ATLAS (experiment at the Large Hadron Collider / character from Greek mythology), DarkSide (dark matter experiment at Gran Sasso National Laboratory / good reason to repurpose your Darth Vader costume), PICASSO (dark matter experiment at SNOLAB / creator of Cubism), MINERvA (Fermilab neutrino experiment / Roman goddess of wisdom), or the Dark Energy Survey (dark energy camera located at the Blanco Telescope in Chile / good opportunity for a pun).

Physics-loving parents can go as explorer Daniel Boone, while the kids go as neutrino experiments MicroBooNE and MiniBooNE. The kids can wear mini fur hats of their own or dress as detector tanks to be filled with candy.

6. Feynman diagram

You might know that a Feynman diagram is a drawing that uses lines and squiggles to represent a particle interaction. But have you ever noticed that they sometimes look like people? Try out this new take on the black outfit/white paint skeleton costume. Bonus points for going as a penguin diagram.

7. Antimatter

Break out the bell-bottoms and poster board. In bold letters, scrawl the words of your choosing: “I hate things!,” “Stuff is awful!,” and “Down with quarks!” will all do nicely. Protest from house to house and declare with pride that you are antimatter. It’s a fair critique: Physicists still aren’t sure why matter dominates the universe when equal amounts of matter and antimatter should have been created in the big bang.

Fortunately, you don’t have to solve this particular puzzle on your quest for candy. Just don’t high five anyone; you might annihilate.

8. Entangled particles

Einstein described quantum entanglement as “spooky action at a distance”—the perfect costume for Halloween. Entangled particles are extremely strange. Measuring one automatically determines the state of the other, instantaneously.

Find someone you are extremely in tune with and dress in opposite colors, like black and white. When no one is observing you, you can relax. But when interacting with people, be sure to coordinate movements. They spin to the left, you spin to the right. They wave with the right hand? You wave with the left. You get the drill.

You can also just wrap yourselves together in a net. No one said quantum entanglement has to be hard.

9. Holographic you(niverse)

The universe may be like a hologram, according to a theory currently being tested at Fermilab’s Holometer experiment. If so, information about spacetime is chunked into 2-D bits that only appear three-dimensional from our perspective.

Help others imagine this bizarre concept by printing out a photo of yourself and taping it to your front. You’ll still technically be 3-D, but that two-dimensional picture of your face will still start some interesting discussions. Perhaps best not to wear this if you have a busy schedule or no desire to discuss the nature of time and space while eating a Snickers.

10. Your favorite particle

There are many ways to dress up as a fundamental particle. Bring a lamp along to trick-or-treat to go as the photon, carrier of light. Hand out cookies to go as the Higgs boson, giver of mass. Spend the evening attaching things to people to go as a gluon.

To branch out beyond the Standard Model of particle physics, go as a supersymmetric particle, or sparticle: Wear a gladiator costume and shout, “I am Sparticle!” whenever someone asks about your costume.

Or grab a partner to become a meson, a particle made of a quark and antiquark. Mesons are typically unstable, so whenever you unlink arms, be sure to decay in a shower of electrons and neutrinos—or candy corn.

Lauren Biron


Do we live in a 2-D hologram?

Tuesday, August 26th, 2014

This Fermilab press release was published on Aug. 26, 2014.

A Fermilab scientist works on the laser beams at the heart of the Holometer experiment. The Holometer will use twin laser interferometers to test whether the universe is a 2-D hologram. Photo: Fermilab

A Fermilab scientist works on the laser beams at the heart of the Holometer experiment. The Holometer will use twin laser interferometers to test whether the universe is a 2-D hologram. Photo: Fermilab

A unique experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory called the Holometer has started collecting data that will answer some mind-bending questions about our universe – including whether we live in a hologram.

Much like characters on a television show would not know that their seemingly 3-D world exists only on a 2-D screen, we could be clueless that our 3-D space is just an illusion. The information about everything in our universe could actually be encoded in tiny packets in two dimensions.

Get close enough to your TV screen and you’ll see pixels, small points of data that make a seamless image if you stand back. Scientists think that the universe’s information may be contained in the same way and that the natural “pixel size” of space is roughly 10 trillion trillion times smaller than an atom, a distance that physicists refer to as the Planck scale.

“We want to find out whether space-time is a quantum system just like matter is,” said Craig Hogan, director of Fermilab’s Center for Particle Astrophysics and the developer of the holographic noise theory. “If we see something, it will completely change ideas about space we’ve used for thousands of years.”

Quantum theory suggests that it is impossible to know both the exact location and the exact speed of subatomic particles. If space comes in 2-D bits with limited information about the precise location of objects, then space itself would fall under the same theory of uncertainty. The same way that matter continues to jiggle (as quantum waves) even when cooled to absolute zero, this digitized space should have built-in vibrations even in its lowest energy state.

Essentially, the experiment probes the limits of the universe’s ability to store information. If there is a set number of bits that tell you where something is, it eventually becomes impossible to find more specific information about the location – even in principle. The instrument testing these limits is Fermilab’s Holometer, or holographic interferometer, the most sensitive device ever created to measure the quantum jitter of space itself.

Now operating at full power, the Holometer uses a pair of interferometers placed close to one another. Each one sends a one-kilowatt laser beam (the equivalent of 200,000 laser pointers) at a beam splitter and down two perpendicular 40-meter arms. The light is then reflected back to the beam splitter where the two beams recombine, creating fluctuations in brightness if there is motion. Researchers analyze these fluctuations in the returning light to see if the beam splitter is moving in a certain way – being carried along on a jitter of space itself.

“Holographic noise” is expected to be present at all frequencies, but the scientists’ challenge is not to be fooled by other sources of vibrations. The Holometer is testing a frequency so high – millions of cycles per second – that motions of normal matter are not likely to cause problems. Rather, the dominant background noise is more often due to radio waves emitted by nearby electronics. The Holometer experiment is designed to identify and eliminate noise from such conventional sources.

“If we find a noise we can’t get rid of, we might be detecting something fundamental about nature – a noise that is intrinsic to space-time,” said Fermilab physicist Aaron Chou, lead scientist and project manager for the Holometer. “It’s an exciting moment for physics. A positive result will open a whole new avenue of questioning about how space works.”

The Holometer experiment, funded by the U.S. Department of Energy Office of Science and other sources, is expected to gather data over the coming year.

The Holometer team comprises 21 scientists and students from Fermilab, the Massachusetts Institute of Technology, the University of Chicago and the University of Michigan. For more information about the experiment, visit http://holometer.fnal.gov/.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.



A version of this article appeared in symmetry on April 8, 2014.

Physicist Aaron Chou keeps the Holometer experiment—which looks for a phenomenon whose implications border on the unreal—grounded in the realities of day-to-day operations. Photo: Reidar Hahn

Physicist Aaron Chou keeps the Holometer experiment—which looks for a phenomenon whose implications border on the unreal—grounded in the realities of day-to-day operations. Photo: Reidar Hahn

The beauty of the small operation—the mom-and-pop restaurant or the do-it-yourself home repair—is that pragmatism begets creativity. The industrious individual who makes do with limited resources is compelled onto paths of ingenuity, inventing rather than following rules to address the project’s peculiarities.

As project manager for the Holometer experiment at Fermilab, physicist Aaron Chou runs a show that, though grandiose in goal, is remarkably humble in setup. Operated out of a trailer by a small team with a small budget, it has the feel more of a scrappy startup than of an undertaking that could make humanity completely rethink our universe.

The experiment is based on the proposition that our familiar, three-dimensional universe is a manifestation of a two-dimensional, digitized space-time. In other words, all that we see around us is no more than a hologram of a more fundamental, lower-dimensional reality.

If this were the case, then space-time would not be smooth; instead, if you zoomed in on it far enough, you would begin to see the smallest quantum bits—much as a digital photo eventually reveals its fundamental pixels.

In 2009, the GEO600 experiment, which searches for gravitational waves emanating from black holes, was plagued by unaccountable noise. This noise could, in theory, be a telltale sign of the universe’s smallest quantum bits. The Holometer experiment seeks to measure space-time with far more precision than any experiment before—and potentially observe effects from those fundamental bits.

Such an endeavor is thrilling—but also risky. Discovery would change the most basic assumptions we make about the universe. But there also might not be any holographic noise to find. So for Chou, managing the Holometer means building and operating the apparatus on the cheap—not shoddily, but with utmost economy.

Thus Chou and his team take every opportunity to make rather than purchase, to pick up rather than wait for delivery, to seize the opportunity and take that measurement when all the right people are available.

“It’s kind of like solving a Rubik’s cube,” Chou says. “You have an overview of every aspect of the measurement that you’re trying to make. You have to be able to tell the instant something doesn’t look right, and tell that it conflicts with some other assumption you had. And the instant you have a conflict, you have to figure out a way to resolve it. It’s a lot of fun.”

Chou is one of the experiment’s 1.5 full-time staff members; a complement of students rounds out a team of 10. Although Chou is essentially the overseer, he runs the experiment from down in the trenches.

Aaron Chou, project manager 
for Fermilab’s Holometer, tests the experiment’s instrumentation. Photo: Reidar Hahn

Aaron Chou, project manager 
for Fermilab’s Holometer, tests the experiment’s instrumentation. Photo: Reidar Hahn

The Holometer experimental area, for example, is a couple of aboveground, dirt-covered tunnels whose walls don’t altogether keep out the water after a heavy rain. So any time the area needs the attention of a wet-dry vacuum, he and his team are down on the ground, cheerfully squeegeeing, mopping and vacuuming away.

“That’s why I wear such shabby clothes,” he says. “This is not the type of experiment where you sit behind the computer and analyze data or control things remotely all day long. It’s really crawling-around-on-the-floor kind of work, which I actually find to be kind of a relief, because I spent more than a decade sitting in front of a computer for more well-established experiments where the installation took 10 years and most of the resulting experiment is done from behind a keyboard.”

As a graduate student at Stanford University, Chou worked on the SLD experiment at SLAC National Accelerator Laboratory, writing software to help look for parity violation in Z bosons. As a Fermilab postdoc on the Pierre Auger experiment, he analyzed data on ultra-high-energy cosmic rays.

Now Chou and his team are down in the dirt, hunting for the universe’s quantum bits. In length terms, these bits are expected to be on the smallest scale of the universe, the Planck scale: 1.6 x 10-35 meters. That’s roughly 10 trillion trillion times smaller than an atom; no existing instrument can directly probe objects that small. If humanity could build a particle collider the size of the Milky Way, we might be able to investigate Planck-scale bits directly.

The Holometer instead will look for a jitter arising from the cosmos’ minuscule quanta. In the experiment’s dimly lit tunnels, the team built two interferometers, L-shaped configurations of tubes. Beginning at the L’s vertex, a laser beam travels down each of the L’s 40-meter arms simultaneously, bounces off the mirrors at the ends and recombines at the starting point. Since the laser beam’s paths down each arm of the L are the same length, absent a holographic jitter, the beam should cancel itself out as it recombines. If it doesn’t, it could be evidence of the jitter, a disruption in the laser beam’s flight.

And why are there two interferometers? The two beam spots’ particular brightening and dimming will match if it’s the looked-for signal.

“Real signals have to be in sync,” Chou says. “Random fluctuations won’t be heard by both instruments.”

Should the humble Holometer find a jitter when it looks for the signal—researchers will soon begin the initial search and expect results by 2015—the reward to physics would be extraordinarily high, especially given the scrimping behind the experiment and the fact that no one had to build an impossibly high-energy, Milky Way-sized collider. The data would support the idea that the universe we see around us is only a hologram. It would also help bring together the two thus-far-irreconcilable principles of quantum mechanics and relativity.

“Right now, so little experimental data exists about this high-energy scale that theorists are unable to construct any meaningful models other than those based on speculation,” Chou says. “Our experiment is really a mission of exploration—to obtain data about an extremely high-energy scale that is otherwise inaccessible.”

What’s more, when the Holometer is up and running, it will be able to look for other phenomena that manifest themselves in the form of high-frequency gravitational waves, including topological defects in our cosmos—areas of tension between large regions in space-time that were formed by the big bang.

“Whenever you design a new apparatus, what you’re doing is building something that’s more sensitive to some aspect of nature than anything that has ever been built before,” Chou says. “We may discover evidence of holographic jitter. But even if we don’t, if we’re smart about how we use our newly built apparatus, we may still be able to discover new aspects of our universe.”


Lots of interesting particle physics news recently on the Cosmic Frontier front.

Science News reports that the National Research Council’s March 7 report for science in the coming decade recommends completion of the Large Synoptic Space Telescope.

…which will not only probe the nature of dark matter and dark energy but aid in tracking near-Earth asteroids.

LSST  is a huge public and private partnership, which includes many of the national labs, among them Fermilab, which hopes to build on its computing experience with the Sloan Digital Sky Survey to help manage the unprecedented flow of data expected from LSST. The February issue of symmetry magazine outlines the partnership needs the experiment will require.

…the LSST camera will produce 3.2-billion-pixel images and generate, on an average viewing night, about 15 terabytes of raw data, or 25,000 CDs worth. To display one of the LSST full-sky images on a television would require not just a high-definition screen, but 1500 of them.

While LSST is not expected to take data for quite sometime, its predecessor the Dark Energy Survey should start its first sky survey in October. The blog dark matter, dark energy, dark gravity explains how DES will be the first experiment to use four different methods at once to search for dark energy. Medill news services uses a great video to show physicists at Fermilab wrapping up tests on camera components before shipping the final parts to Chile for assembly on the 4-meter Blanco telescope. Sadly, the New York Times reports that the driving force behind making the telescope a bastion of U.S. science in Chile, Victor Blanco, passed away. 

Unlike DES and LSST, the holometer experiment aims not to record the sky as we see it but as Fermilab theorist Craig Hogan thinks it really is: a giant hologram.  The Little India newspaper explains Hogan’s theory and how it relates to black hole science.

Scientists have known for long time that information plays a key role in the creation of a system. Our computers and robots are just metals and wires if no information is exchanged in the form of bits. Our brain is inanimate if no information is carried by the neurons. Our genes are futile if no information is available from DNA that instructs how to function. In everything we know information is the key.

Similarly the entire information about our universe must be encoded elsewhere. Like a hologram on our credit cards, which contains the information in a thin film, and can generate 3D objects when viewed in proper light, the reality we tempt to believe is actually just one way of viewing information printed on a distant cosmic film. What we see and experience as reality are the shadows of the truth.

–Tona Kunz