• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘LIGO’

Aujourd’hui, les scientifiques du Laser Interferometer Gravitational-Wave Observatory ou LIGO ont fièrement annoncé avoir détecté les toutes premières ondes gravitationnelles. Décrites il y a exactement cent ans dans la Théorie de la Relativité Générale par Albert Einstein, ces ondes, qu’on a longtemps crues être beaucoup trop faibles pour être captées, ont enfin été détectées.

En 1916, Einstein décrit la gravitation comme une déformation de l’espace et du temps, comme si l’espace n’était qu’un tissu qui s’étire en présence d’objets massifs. Un espace vide serait semblable à un drap tendu. Un objet se déplaçant dans cet espace, comme par exemple une balle de ping-pong, suivrait simplement la surface du drap. Laissez tomber un objet lourd sur ce drap et le tissu sera déformé. La balle de ping-pong ne roulera plus en ligne droite, mais suivra naturellement la courbe de l’espace déformé.

En tombant sur le drap, l’objet lourd créera de petites ondulations qui se propageront autour de lui, comme des vaguelettes à la surface de l’eau. De même, le Big Bang ou une collision entre deux trous noirs peut aussi créer des ondulations qui atteindraient éventuellement la Terre.

C’est ce type d’ondulations que LIGO a enfin détectées, comme l’explique cette excellente vidéo (mais en anglais). Les scientifiques de LIGO ont utilisé un interféromètre, un appareil muni de deux branches identiques tel qu’indiqué sur l’image ci-dessous. Un laser (en bas à gauche) émet un faisceau de lumière qui vient frapper un morceau de verre (au centre). La moitié du faisceau est réfléchie, l’autre poursuit son chemin. Les deux faisceaux parcourent exactement la même distance (4 km) avant d’être réfléchis par un miroir.

LIGO-1

Un faisceau de lumière, telle une vague à la surface de l’eau, possède des crêtes et des creux. Au retour, les deux faisceaux se chevauchent à nouveau, mais la longueur des branches est telle que la position des crêtes du premier faisceau est décalée par rapport à celle de l’autre, de telle sorte qu’ils se neutralisent. Par conséquent, un détecteur situé à droite ne décèlerait aucune lumière.

LIGO-2

Imaginez maintenant qu’une vague gravitationnelle, produite par exemple par une collision entre deux trous noirs, se propage à travers l’interféromètre. Le « tissus » de l’espace serait étiré puis comprimé sous le passage de cette onde. La longueur des branches de l’interféromètre serait modifiée, décalant ainsi les crêtes et les creux. Les deux faisceaux ne s’annuleraient plus. Un détecteur détecterait une lumière oscillante durant le passage d’une onde gravitationnelle à travers l’appareil.

Le défi de cette expérience consiste à éliminer toutes sources de vibrations, qu’elles proviennent des vagues de l’océan, d’un tremblement de terre, ou même du trafic car elles produiraient des effets semblables. Les faisceaux laser voyagent donc dans des tuyaux à vide et les miroirs sont montés sur des ressorts et suspendus à de fins fils. On amortit ainsi les vibrations externes par un facteur de 10 milliards.

Pour s’assurer qu’un signal provient réellement d’une onde gravitationnelle et non pas d’une autre perturbation, LIGO utilisent deux interféromètres identiques et distants de plus de 3000 km. L’un se trouve en Louisiane, l’autre dans l’état de Washington.

Et voici ce signal, produit lors de la fusion de deux trous noirs d’environ 50 km mais trente fois plus massifs que le soleil. Cette collision a généré une onde gravitationnelle qui s’est propagé pendant un milliard d’années avant d’atteindre la Terre le 14 septembre dernier. L’onde a modifié la longueur des branches de l’interféromètre de 4 km d’à peine un millième de la taille d’un proton. Une petite oscillation durant seulement 20 millisecondes, accélérant rapidement puis disparaissant, exactement tel que prédit par les équations de la relativité générale.

Ligo-3

Donc quand les deux instruments ont détecté simultanément ce signal, leur coïncidence n’a laissé aucun doute. Il ne pouvait s’agir que d’ondes gravitationnelles. LIGO n’a détecté que la partie classique de ces ondes. On ne sait toujours pas si les ondes gravitationnelles sont quantifiées ou pas, et si elles s’accompagnent d’une particule appelée le graviton.

Pendant des siècles, les astronomes ont utilisé des ondes électromagnétiques comme la lumière pour explorer l’Univers. Les ondes gravitationnelles fourniront un nouvel outil pour pousser l’exploration de l’Univers encore plus loin. Ce que ces ondes nous apprendrons vaudra bien d’avoir attendu cent longues années pour les découvrir.

Pauline Gagnon

Pour en savoir plus sur la physique des particules et les enjeux du LHC, consultez mon livre : « Qu’est-ce que le boson de Higgs mange en hiver et autres détails essentiels».

Pour recevoir un avis lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution.

LIGO-4

L’interféromètre de LIGO sur le site de Hanford dans l’état de Washington avec ses branches de 4 km de longueur. ©NASA

Share

A faint ripple shakes the World

Thursday, February 11th, 2016

Today, scientists from the Laser Interferometer Gravitational-Wave Observatory or LIGO have proudly announced having detected the first faint ripples caused by gravitational waves. First predicted exactly one hundred years ago by Albert Einstein in the Theory of General Relativity, these gravitational waves, long believed to be too small to be seen, have at long last been detected.

In 1916, Einstein explained that gravitation is a distortion of space and time, as if it was a fabric that could be distorted by the presence of massive objects. An empty space would be like a taut sheet. Any object, like a ping-pong ball travelling in that space, would simply follow the surface of the sheet. Drop a heavy object on the sheet, and the fabric will be distorted. The ping-pong ball would no longer roll along a straight line but would naturally follow the curve of the distorted space.

A heavy object falling on that sheet would generate small ripples around it. Likewise, the Big Bang or collisions between black holes would also create ripples that would eventually reach the Earth.

These were the small disturbances LIGO was set to find. As explained in this excellent video, the scientists used an interferometer, that is, an apparatus with two identical arms as shown below. A laser (bottom left corner) emits a beam of light that hits a piece of glass (center). Half of the beam is reflected, half of it keeps going on. The two beams travel exactly the same distance (4 km), hit a mirror and bounce back.

LIGO-1

A light beam is a wave, and just like waves at the surface of water, it has crests and troughs. The arms length is such that when the beams return and overlap again, the two sets of waves are shifted with respect to each other, such that they cancel each other out. Hence, a detector placed at the bottom right corner would see no light at all.LIGO-2

Now imagine that a gravitational wave, produced by the collisions of two black holes for example, sweeps across the interferometer. The fabric of space would be stretched then compressed as the wave passes through. And so the length of the arms would change, shifting the pattern of crests and troughs. The two beams would no longer cancel each other. A light-sensitive detector would now detect some light that would pulsate as the gravitational wave sweeps across the apparatus.

The challenge is that any vibration caused by waves crashing on the shore, earthquakes, or even heavy traffic would disturb such an experiment by producing similar effects. So the laser beams travel in vacuum and the mirrors are mounted on shock-absorbing springs and suspended on fine wires to dampen any vibration by a factor of 10 billion.

To ensure a signal really comes from a gravitational wave and not from some other disturbance, LIGO used two identical laboratories located more than 3000 km apart in the USA, one in Louisiana, one in Washington State.

And here is the signal generated when two black holes, 50 km in diameter but 30 times more massive than the Sun, merged. This collision sent a gravitational wave that traveled for about a billion year before reaching the Earth on 14 September 2015. This wave changed the length of the 4-km arms by one thousandth of the size of a proton. A tiny ripple that lasted a mere 20 milliseconds, accelerating quickly before disappearing, exactly as General Relativity predicted.

Ligo-3

So when both instruments detected the same signal, the coincidence between the two left no doubt. It really was from gravitational waves. So far, the LIGO experiment only detected the classical part of these waves. We still do not know if gravitational waves are quantized or not, that is, if they come with a particle called the graviton.

For centuries, astronomers have used electromagnetic waves such as light to explore the Universe. Gravitational waves will provide a new tool to study it even further. Other experiments such as BICEP2 are already looking for the ripples left over from the Big Bang. What we will learn from these waves will be well worth the hundred-year long wait from their prediction to their discovery.

Pauline Gagnon

To learn more on particle physics, don’t miss my book, out this July.

To be alerted of new postings, follow me on Twitter: @GagnonPauline  or sign-up on this mailing list to receive an e-mail notification.

 LIGO-4

The LIGO interferometer in Hanford, Washington State, USA, with its 4km-long arms. ©NASA

Share

Chasing the waves

Thursday, March 5th, 2009

“Travel the world, visit exotic places, see the same hundred people at each of them” is how one of my colleagues describes his life in particle physics.  There is some truth to it — given that I and my collaborators are distributed all over the world, we might as well meet up at places other than CERN now and then, and why not go somewhere interesting?

This week I went to the annual “all hands” meeting of the Open Science Grid.  The OSG provides the underlying grid middleware that supports LHC computing in the United States, and many other scientific collaborations that do large-scale, highly-distributed computing.  One of those collaborations is the Laser Interferometry Gravitation Observatory (LIGO), so this year the meeting was held at one of LIGO’s experimental sites in Livingston, LA (about a half hour’s drive east of Baton Rouge).

It’s always fun to go see someone else’s physics experiment!  With apologies to the people who work on LIGO, here’s how I understand it to work, in just one paragraph.  Einstein’s theory of gravity predicts that astronomical systems such as binary stars can emit gravitational waves, which are propagating variations in the fabric of space-time. As they pass through some region of space, they will cause the distance between two points in space to change.  So, LIGO measures the distance between sets of mirrors that are separated by 4 km in the hope of seeing that distance vary (and better still, correlating that event with some event that can be observed in the sky).  But these effects will be very small, such that the mirrors will only be displaced by a small fraction of the radius of the proton.  That means that you have to isolate the mirrors from the rest of the environment as well as possible, and then understand all sorts of environmental effects so that you can account for them in your measurements of the distances.  This is an extremely difficult experiment, and with the current version of LIGO, the experimenters only expect to see one gravitational wave event every ten years.  They are currently implementing upgrades that will increase their sensitivity to the point where they can observe tens of events (or more) every year.  If they can make it work, it will provide a new way to look at the sky that can bring complementary information, just as every wavelength of light used in astronomy tells us something new.  (OK, it was a long paragraph.)

So we all got to see the two long perpendicular tunnels on the site, although we weren’t able to go inside to see the apparaturs itself.  We also got to hear about the particular computing challenges that LIGO faces.  They produce about a terabyte of data each day, which is a factor of several less than what we would expect out of CMS.  Only about 1% of that data is needed to make the distance measurements; the rest is all the information about the environment.  What is most important for LIGO is turnaround — they want to be able to analyze the data in as close to real time as possible, so that if they observe something interesting, they can alert other astronomers who can try to make confirming observations. 

Of course, this visit wasn’t all fun and games (or crawfish, which is none of the above) for me.  We also had the annual get-together of the staff of the seven US CMS Tier-2 computing sites.  We do a videoconference every two weeks to keep ourselves informed of what is going on, but it is nice to actually get everyone in the same room once a year; all those conversations that usually happen through email (see my previous complaints) or instant messaging (perhaps even worse!) can happen face to face.  This year we spent a lot of time talking about what we can do to improve the reliability of site operations (if anything), our high-level plans for the next year, and what systems we may want to use to manage our disk storage in the future.  This last item got a lot of attention; we chose our current system more than four years ago, and people had a lot of enthusiasm for some alternatives that have emerged since then.  We’ll see how that turns out!

Share