• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘matière noire’

Pour célébrer les cinq premières années d’opération à bord de la Station spatiale internationale, le Professeur Sam Ting, porte-parole de la Collaboration Alpha Magnetic Spectrometer (AMS-02) vient de présenter leurs derniers résultats lors d’un récent séminaire tenu au CERN. Avec plus de 90 millions d’évènements recueillis dans les rayons cosmiques, ce groupe dispose des données les plus précises sur une vaste gamme de particules trouvées dans l’espace.

ams-02

source: ©NASA

La question qui intrigue de nombreux scientifiques est de savoir s’ils pourront résoudre l’énigme de l’origine de l’excès de positrons trouvés dans les rayons cosmiques. Les positrons sont l’antimatière des électrons. Étant donné que nous vivons dans un monde fait presque uniquement de matière, les scientifiques se demandent depuis plus d’une décennie d’où émanent ces positrons. Il est bien connu que des positrons sont produits lorsque les rayons cosmiques interagissent avec la matière interstellaire mais on en observe bien plus que ce à quoi on s’attendait de cette seule source.

Des hypothèses diverses ont été formulées pour expliquer l’origine de ces positrons excédentaires. Une des plus fascinantes suggère que ces positrons pourraient venir de l’annihilation de particules de matière sombre. La matière sombre est une nouvelle forme de matière invisible qu’on détecte dans l’Univers par ses effets gravitationnels. La matière régulière, tout ce que nous voyons sur la Terre, mais aussi dans les étoiles et les galaxies, émet de la lumière lorsque chauffée, tout comme une pièce métallique irradie à haute température.

La matière sombre n’émet aucune lumière, d’où son nom. Elle est cinq fois plus répandue que la matière régulière. Personne ne le sait encore mais on soupçonne que cette matière, tout comme la matière ordinaire, soit faite de particules, mais on n’a toujours pas capturé de particules de matière sombre. Mais si de telles particules existaient, elles pourraient s’annihiler entre elles, produisant des électrons et des positrons, ou des paires de protons et d’antiprotons. Si un tel processus était établi, cela confirmerait enfin l’existence de particules de matière sombre et révèlerait quelques indices sur leurs caractéristiques.

Une explication alternative mais moins exotique serait que l’excès observé de positrons provienne de pulsars. Les pulsars sont des étoiles à neutrons ayant un fort champ magnétique et qui émettent de la lumière pulsée. Mais la lumière est faite de photons et les photons peuvent eux aussi produire des paires d’électrons et de positrons. Donc, les pulsars tout comme l’annihilation de matière sombre, fournissent une explication plausible quant à la source de ces positrons.

Pour les distinguer, il faut mesurer l’énergie des positrons captés dans les rayons cosmiques et voir combien on en trouve à haute énergie. C’est ce que AMS a fait et leurs résultats sont visibles dans le graphe de gauche ci-dessous où nous voyons le flux de positrons (axe vertical) trouvé à une énergie particulière (axe horizontal). Le flux combine le nombre de positrons trouvés avec leur énergie au cube. La courbe en vert donne le nombre de positrons produits lorsque des rayons cosmiques frappent de la matière interstellaire (ISM).

Si l’excès de positrons devait venir de l’annihilation de matière sombre, on ne trouverait aucun positron au-delà de l’énergie correspondant à la masse des particules de matière sombre. Ils auraient une distribution d’énergie semblable à la courbe en brun sur le graphe ci-dessous tel que prédit pour des particules de matière sombre ayant une masse de 1 TeV, soit mille fois plus lourd qu’un proton. Dans ce cas, la courbe de distribution d’énergie des positrons chuterait rapidement. Les points en rouge représentent les données d’AMS avec leurs erreurs expérimentales indiquées par les barres verticales. Par contre, si les positrons venaient de pulsars, la chûte à haute énergie serait moins prononcée.

ams-2016

source: Collaboration AMS

Toute la difficulté consiste à comprendre précisément leur comportement à haute énergie. Mais comme on y trouve moins de positrons, il est beaucoup plus difficile de voir ce qu’il en est comme l’indiquent les larges marges d’erreur associées aux mesures faites à plus haute énergie.

Mais si on mesure plutôt la fraction de positrons trouvés dans les données en combinant positrons et électrons, certaines des erreurs expérimentales s’annulent. AMS a rassemblé plus d’un million de positrons et 16 millions d’électrons. Les points en rouge sur le graphe de droite ci-dessus montrent la fraction de positrons trouvée dans leur échantillon en fonction de leur énergie. Malgré les pas de géants accomplis, la précision actuelle de ces mesures ne permet toujours pas d’établir clairement si cette fraction tombe abruptement à haute énergie ou pas.

La Collaboration AMS espère toutefois avoir assez de données pour distinguer les deux hypothèses d’ici à 2024, date à laquelle la Station Spatiale Internationale cessera ses opérations. On peut voir ces projections sur les deux graphes suivants tant pour le flux de positrons (à gauche) que pour la fraction de positrons (à droite). À ce jour, les deux hypothèses sont toujours valides étant donné la taille des erreurs expérimentales.

ams-2024

source: Collaboration AMS

L’hypothèse de la matière sombre peut aussi être testée d’une autre façon. En interagissant avec la matière interstellaire, les rayons cosmiques produisent non seulement des positrons mais aussi des antiprotons. Les annihilations de matière sombre pourraient aussi en produire mais pas les pulsars. Il faut donc déterminer s’il y a ou pas plus d’antiprotons dans l’espace que ce que les rayons cosmiques peuvent produire. Si c’était établi, ce serait un argument de plus contre l’hypothèse des pulsars. Mais pour ce faire, il faut savoir précisément comment les rayons cosmiques se propagent et interagissent avec la matière interstellaire.

S’appuyant sur le vaste échantillon d’antiprotons recueillis par AMS, le Prof. Sam Ting a soutenu qu’un tel excès existe, présentant le graphe suivant à l’appui. On y voit la fraction d’antiprotons trouvés dans l’échantillon total de protons et des antiprotons en fonction de leur énergie. Les points en rouge représentent les mesures d’AMS, la bande brune, les calculs théoriques pour les rayons cosmiques et la bande bleue, ce qui pourrait venir de la matière sombre.

antiproton-fraction

source: Collaboration AMS

Ce graphe suggère fortement un surplus d’antiprotons par rapport à ce que l’on s’attend des rayons cosmiques interagissant avec la matière interstellaire (ISM). Mais tant Dan Hooper qu’Ilias Cholis, deux théoriciens experts en la matière, s’objectent carrément, disant que l’incertitude sur les prédictions théoriques sont beaucoup plus grandes que ce que ce graphe suggère. Ils soutiennent que le graphe suivant (de Cuoco etal.) est de loin plus réaliste. Les points en rose représentent les données d’AMS pour la fraction d’antiprotons et le trait en noir, les prédictions théoriques avec leur marge d’erreur. Les deux concordent ou presque, suggérant l’absence de tout excès. Nous devrons patienter encore quelques années avant que les données d’AMS et les prédictions théoriques soient assez précises pour savoir s’il y a excès ou pas.

antiprotons-theorie

            source : Cuoco, Krämer and Korsmeier, arXiv:1610.03071v1

La Collaboration AMS pourrait nous réserver une autre belle surprise : la découverte d’antiatomes d’hélium dans l’espace. Étant donné l’extrême difficulté à produire une particule d’antimatière plus complexe qu’un antiproton, les scientifiques d’AMS devront trier d’énormes quantités de données et réduire toutes les erreurs expérimentales encore davantage avant qu’une telle découverte ne puisse être établie.

La découverte d’antihélium, ou celle d’un excès d’antiprotons ou encore la résolution de l’énigme des positrons, tout cela vaut bien la peine d’attendre encore quelques années. AMS a du beau pain sur la planche!
Pauline Gagnon

Pour en savoir plus sur la physique des particules et la matière sombre, consultez mon livre “Qu’est-ce que le boson de Higgs mange en hiver et autres détails essentiels“.

Pour être au courant des nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou inscrivez-vous sur cette liste de distribution

Share

Twitter, Planck et les supernovae

Thursday, February 26th, 2015

Matthieu Roman est un jeune chercheur CNRS à Paris, tout à, fait novice sur la twittosphère. Il nous raconte comment il est en pourtant arrivé à twitter « en direct de son labo » pendant une semaine. Au programme : des échanges à bâton rompu à propos de l’expérience Planck, des supernovae ou l’énergie noire, avec un public passionné et assidu. Peut-être le début d’une vocation en médiation scientifique ?

Mais comment en suis-je arrivé là ? Tout a commencé pendant ma thèse de doctorat en cosmologie au Laboratoire Astroparticule et Cosmologie (APC, CNRS/Paris Diderot), sous la direction de Jacques Delabrouille, entre 2011et 2014. Cette thèse m’a amené à faire partie de la grande collaboration scientifique autour du satellite Planck, et en particulier de son instrument à hautes fréquences plus connu sous son acronyme anglais HFI. Je me suis intéressé au cours de ces trois années à l’étude pour la cosmologie des amas de galaxies détectés par Planck à l’aide de « l’effet Sunyaev-Zel’dovich » (interaction des photons du fond diffus cosmologique avec les électrons piégés au sein des amas de galaxies). En mars 2013, j’étais donc aux premières loges au moment de la livraison des données en température de Planck qui ont donné lieu à un emballement médiatique impressionnant. Les résultats démontraient la solidité du modèle cosmologique actuel composé de matière noire froide et d’énergie noire.

A-t-on découvert les ondes gravitationnelles primordiales ?
Puis quelques mois plus tard, les américains de l’expérience BICEP2, située au Pôle Sud, ont convoqué les médias du monde entier afin d’annoncer la découverte des ondes gravitationnelles primordiales grâce à leurs données polarisées. Ils venaient simplement nous apporter le Graal des cosmologistes ! Nouvelle excitation, experts en tous genres invités sur les plateaux télés, dans les journaux pour expliquer que l’on avait détecté ce qu’avait prédit Einstein un siècle plus tôt.

Mais dans la collaboration Planck, nombreux étaient les sceptiques. Nous n’avions pas encore les moyens de répondre à BICEP2 car les données polarisées n’étaient pas encore analysées, mais nous sentions qu’une partie importante du signal polarisé de la poussière galactique n’était pas pris en compte.

Les derniers résultats ont montré une carte de poussière galactique sur laquelle a été rajoutée la direction du champ magnétique galactique. Je la trouve particulièrement belle ! Crédits : ESA - collaboration Planck

Les derniers résultats ont montré une carte de poussière galactique sur laquelle a été rajoutée la direction du champ magnétique galactique. Je lui trouve un aspect particulièrement artistique ! Crédits : ESA- collaboration Planck

Et voilà : depuis quelques jours, c’est officiel ! Planck, dans une étude conjointe avec BICEP2 et Keck, fixe une limite supérieure sur la quantité d’ondes gravitationnelles primordiales, et par conséquent pas de détection. En somme, retour à la case départ, mais avec beaucoup d’informations supplémentaires. Les futures missions spatiales, ou expériences au sol ou en ballon visant à détecter avec une grande précision la polarisation du fond diffus à grande échelle, dont l’intérêt aurait pu être remis en question si BICEP2 avait eu raison, viennent de prendre à nouveau tout leur sens. Car il faudra bien aller les chercher, ces ondes gravitationnelles primordiales, avec un nombre de détecteurs embarqués de plus en plus grand afin d’augmenter la sensibilité, et la capacité de confirmer à coup sûr l’origine cosmologique de tout signal détecté !

De la poussière galactique aux explosions d’étoiles
Entre temps, j’ai eu l’opportunité de prolonger mon activité de recherche pendant trois années supplémentaires avec un post-doctorat au Laboratoire de physique nucléaire et des hautes énergies (CNRS, Université Pierre et Marie Curie et Université Paris Diderot) sur un sujet complètement nouveau à mes yeux : les supernovae, ces étoiles en fin de vie dont l’explosion est très lumineuse. On les étudie dans le but ultime de connaître précisément la nature de l’énergie noire, tenue responsable de l’expansion accélérée de l’Univers. Au temps de la preuve de l’existence de l’énergie noire obtenue à l’aide des supernovae (1999), on imaginait que leur courbe de lumière était assez peu variable. On a pris d’ailleurs l’habitude de les appeler « chandelles standard ».

Sur cette  image de la galaxie M101 on peut voir distinctement une supernova qui a explosé en 2011 : c'est le gros point blanc en haut à droite. Crédit T.A. Rector (University of Alaska Anchorage), H. Schweiker & S. Pakzad NOAO/AURA/NSF

Sur cette image de la galaxie M101 on peut voir distinctement une supernova qui a explosé en 2011 : c’est le gros point blanc en haut à droite. Celle-ci se situe dans l’un des bras spiraux, mais ne brillerait pas de la même façon si elle était au centre. Crédit T.A. Rector (University of Alaska Anchorage), H. Schweiker & S. Pakzad NOAO/AURA/NSF

Avec l’affinement des méthodes de détection, on se rend compte que les supernovae ne sont pas vraiment les chandelles standard que l’on croit, ce qui relance complètement l’intérêt du domaine. En particulier, le type de galaxie dans laquelle explose une supernova peut créer des variations de luminosité, et ainsi affecter la mesure du paramètre décrivant la nature de l’énergie noire. C’est le projet dans lequel je me suis lancé au sein de la (petite) collaboration du Supernova Legacy Survey (SNLS). En espérant un jour pouvoir étudier ces objets sous la forme d’autres projets scientifiques, avec des détecteurs encore plus puissants comme Subaru ou LSST.

Twitter en direct de mon labo…
En fait c’est une amie, Agnès, qui m’a fait découvrir Twitter et m’a encouragé à raconter mon travail au jour le jour et pendant une semaine via le compte @EnDirectDuLabo. Il s’agissait d’un monde nouveau pour moi, qui n’était pas du tout actif sur ce que l’on appelle « la twittosphère ». C’est malheureusement le cas pour de nombreux chercheurs en France. Expérience très enrichissante s’il en est, puisqu’elle semble susciter l’intérêt de nombreux twittos, et a permis de porter le nombre d’abonnés à plus de 2000. Cela m’a permis par exemple d’expliquer les bases de l’électromagnétisme nécessaires en astronomie, des détails plus techniques sur les performances de l’expérience dans laquelle je travaille ou encore ma vie au quotidien dans mon laboratoire.

Ce fut très amusant de livrer mon travail quotidien au grand public, mais aussi très chronophage ! J’ai toujours été convaincu par l’importance de la médiation scientifique, sans jamais oser me lancer. Il était peut-être temps…

Matthieu Roman est actuellement post-doctorant au Laboratoire de physique nucléaire et de hautes énergies (CNRS, Université Pierre et Marie Curie et Université Paris Diderot)

Share

Dernier volet d’une série de quatre sur la matière sombre

Après avoir examiné comment la matière sombre révèle sa présence à travers des effets gravitationnels, l’absence de preuves directes d’interaction avec la matière ordinaire et comment la cosmologie soutient aussi son existence, voici ce que le Grand collisionneur de hadrons (LHC) du CERN peut accomplir.

Nous pourrons peut-être trouver la matière sombre avec le LHC mais seulement si la matière sombre interagit avec la matière ordinaire. Comme nous ne connaissons pas le processus exact, nous élaborons des pièges adaptés à autant de bestioles qu’il y a de théories. En voici quelques-unes.

La supersymétrie
Le Modèle standard, la théorie actuelle décrivant la physique des particules, réussi à expliquer presque tout ce qui a été observé jusqu’à présent. Malheureusement, à plus haute énergie, ses équations ne tiennent plus la route.

C’est pourquoi des théoricien-ne-s ont développé la  supersymétrie  (ou SUSY pour les intimes) qui englobe le modèle standard mais va plus loin. Ce qui est vraiment remarquable, c’est que cette nouvelle théorie élaborée pour corriger les défauts du modèle standard prédit l’existence de particules ayant les caractéristiques de la matière sombre, d’où sa grande popularité.

Tout serait parfait, sauf qu’aucune des nombreuses particules supersymétriques postulées n’a encore été détectée. Est-ce simplement parce que ces particules sont hors de la portée actuelle du LHC ? Nous aurons plus de chances de les découvrir après son redémarrage en 2015 à bien plus haute énergie.

La plus légère des particules supersymétriques
Dans le LHC, les protons entrent en collision, produisant de grandes quantités d’énergie. Puisque l’énergie, E, et la masse, m, sont deux formes d’une même essence comme le stipule la célèbre E = mc2, l’énergie peut se matérialiser en nouvelles particules. Les particules lourdes sont instables et se désintègrent rapidement en plus légères.

Certaines variantes de SUSY prédisent que toutes les particules supersymétriques doivent se désintégrer en d’autres particules supersymétriques. Suivant cette assomption, la particule supersymétrique la plus légère ne peut pas se désintégrer et reste stable, incapable d’interagir avec quoi que ce soit d’autre, exactement comme on s’y attend pour la matière sombre.
sqark-cascade

Voici une chaîne de désintégration typique. Un quark supersymétrique se désintègre en une autre particule supersymétrique, χ2, et en un quark ordinaire, q. Lors des deux étapes suivantes, un électron ou muon (notés l+ and l) et des particules supersymétriques plus légères sont produites. La plus légère, dans ce cas particulier une particule appelée neutralino, χ1 ne peut se désintégrer en quoi que ce soit d’autre et s’échappe du détecteur sans laisser de trace.

Voir l’invisible
Un événement est un cliché révélant toutes les particules plus légères émises lors des désintégrations de particules instables. Pour chaque évènement, l’énergie doit être balancée. Ainsi, même lorsqu’une particule traverse le détecteur en ne laissant aucun signal, elle peut être détectée grâce au déséquilibre de l’énergie de cet événement. On détecte donc les particules supersymétriques les plus légères et invisibles de cette façon.

Les collaborations CMS et ATLAS cherchent donc des événements ayant un fort déséquilibre en énergie accompagné soit d’un unique photon soit d’un jet (une gerbe de particules constituées de quarks).

MET-photon-ATLAS

Ci-dessus, on voit un événement capté par l’expérience ATLAS contenant un seul photon (le dépôt d’énergie indiqué en jaune vers 4 heures à gauche et aussi à droite) et l’énergie manquante représentée par la ligne pointillée rose vers 10 heures.

C’est exactement ce à quoi un événement contenant la particule supersymétrique la plus légère et un photon ressemblerait. Mais un événement contenant un boson Z et un photon a la même allure quand le boson Z se désintègre en deux neutrinos (autres particules qui n’interagissent pas avec le détecteur).

Malheureusement, jusqu’à présent, pour les multiples scénarios étudiés, rien n’a été trouvé sauf le bruit de fond attendu, c’est à dire tous les autres types d’événements connus ayant la même signature.

Contrairement aux recherches directes de matière sombre, les analyses du LHC sont sensibles aux particules de matière sombre même légères. Rappelez-vous le diagramme très fouillis que j’ai montré sur les recherches directes de matière sombre? CMS et ATLAS peuvent aider à clarifier la situation, même si leurs résultats dépendent d’hypothèses théoriques contrairement aux recherches directes.

Voici les résultats de l’expérience CMS pour les recherches d’évènements contenant un seul jet et de l’énergie manquante. L’axe horizontal donne la masse du candidat de matière sombre et l’axe vertical, le taux d’interaction avec la matière ordinaire. Toutes les valeurs au-dessus des différentes courbes sont exclues. CMS (ligne rouge) exclue les particules de matière sombre légère ayant un taux d’interaction élevé, une région inaccessible à XENON100 (courbe bleue), l’expérience la plus puissante pour la recherche directe de la matière sombre.

SpinIndependent_woScalar-CMS

Boson de Higgs et matière sombre
Une autre approche visant à trouver la matière sombre repose sur certaines théories prédisant que le boson de Higgs pourrait se désintégrer en particules de matière sombre.

inv-HiggsLes bosons de Higgs sont parfois produits avec un boson Z. Si le boson de Higgs se désintègre en matière sombre, nous verrions seulement les débris du boson Z et de l’énergie manquante pour le boson de Higgs. Les recherches en ce sens ont jusqu’ici rien révélé de plus que le bruit de fond attendu.

Des mondes parallèles
Des théoricien-ne-s ont développé une étonnante théorie de la matière sombre incorporant les idées d’une vallée cachée où deux mondes évolueraient en parallèle: notre monde avec les  particules du modèle standard et celles de la supersymétrie (bien qu’encore inconnues), et un monde complètement séparé peuplé de particules sombres comme illustré ci-dessous. Ici, chaque ligne horizontale représente une particule d’une masse donnée.

ValleeCachee

L’idée est que le LHC pourrait produire des particules supersymétriques lourdes. Ces particules se désintégreraient en cascade. La plus légère des particules de SUSY serait un “messager” capable de traverser la vallée cachée et de s’échapper dans le secteur sombre, devenant invisible pour nous.

Dans le secteur sombre, cette particule se désintégrerait en une cascade de particules sombres jusqu’à ce qu’elle atteigne la plus légère des particules supersymétriques sombres, un autre messager capable de réapparaître dans notre monde en émettant de nombreuses paires d’électrons ou de muons.

Même si cela ressemble à de la science-fiction, il s’agit bien de physique non vérifiée mais très sérieuse comme en attestent les articles cités ci-dessus.

J’étais jusqu’à tout récemment l’une des expérimentatrices et expérimentateurs à la recherche de signes de cette vallée cachée. Nous sélectionnions des événements contenant des paires regroupées d’électrons et de muons, mais n’avons rien trouvé de plus que le bruit de fond.

Les recherches continuent, là et dans de nombreux autres endroits, tout en raffinant constamment les méthodes et en essayant de nouvelles stratégies. Si la matière sombre interagit avec la matière, nous devrions la trouver.

Premier volet:     Comment sait-on que la matière sombre existe?

Deuxième volet: Comment mettre la main sur la matière sombre

Troisième volet: Cosmologie et matière sombre

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

 

Share

Le LSM(1) est un laboratoire insolite par sa situation géographique, situé à 1700 mètres sous la roche pour une meilleure observation de l’univers. Ce n’est pas sa seule particularité …

Entre la Savoie et l’Italie, dans l’atmosphère étouffante et assourdissante du tunnel du Fréjus, rien n’indique la présence du laboratoire au kilomètre 6,5. Puis, en pénétrant dans l’antre, et à la vue de cette grande caverne bardée d’instruments scientifiques dans laquelle s’affairent des chercheurs aux accents russe, grec ou chinois, c’est une excitante sensation d’être au beau milieu d’un film de James Bond qui vous saisit. A l’extérieur, dans la vallée, comme un écho à cette impression, les rumeurs vont bon train et parlent même d’expériences secrètes ! Pourtant, il n’en est rien, car l’intérêt à s’installer sous la montagne est purement scientifique. En effet, le but n’est pas de se soustraire aux regards indiscrets, mais de s’abriter du flux des rayons cosmiques qui bombardent la surface de la Terre en permanence. L’objectif est de mener des recherches sur la matière noire ou le neutrino et procéder à des mesures d’ultra faible radioactivité grâce à un niveau de bruit de fond très bas. Une quête au moins aussi palpitante qu’un scénario de James Bond !

C’est ainsi que depuis 30 ans, le laboratoire aiguise la curiosité des habitants de Modane et des vacanciers… Un lieu propice à l’échange avec les chercheurs s’est donc révélé nécessaire et a été créé en 2009 dans le bâtiment Carré Sciences situé à Modane. Près de 3000 personnes découvrent chaque année “les petits secrets de l’univers” et environ 300 chanceux visitent le laboratoire lui-même.

Tubes de Geissler-Plücker, découverte de l ionisation – photo : lsm

A l’entrée de l’exposition se trouve un cosmophone qui révèle en direct le passage des rayons cosmiques et les transforme en une mélodie de l’univers. Conçu par le Centre de Physique des Particules de Marseille (CPPM), cet instrument ludique aide à comprendre pourquoi le laboratoire cherche à se mettre à l’abri des rayons cosmiques.

Suivent ensuite des vidéos, l’exposition d’objets remarquables, des panneaux et des jeux ou encore le petit train de la radioactivité naturelle. Une chambre à brouillard, instrument fascinant, donne une touche artistique et permet de voir concrètement la trace laissée par le passage d’une particule de radioactivité venant de l’air, de la Terre, du cosmos… ou bien même de notre propre corps !

De quoi aiguiser la matière grise en attendant de percer les secrets de la matière noire…

Avec l’essor du tourisme scientifique, la qualité de cette exposition permanente et l’intérêt du laboratoire sont désormais reconnus et mis en avant par les professionnels du tourisme. L’exposition du LSM et le laboratoire lui-même sont cités dans le Guide du Routard(2), le Guide Vert Michelin(3) ou encore le Petit Futé(4). Un coup de pouce qui nous aide à partager la science avec le public. Pas mal non ?

 

 

(1) LSM : laboratoire souterrain de Modane – UMR6417 du CNRS/IN2P3 et du CEA/IRFU
(2) Guide du Routard Savoie Mont-Blanc, page 121
(3) Guide Vert Michelin Alpes du Nord – Savoie Dauphiné, page 422
(4) Petit Futé France souterraine, page 14 – Petit Futé Savoie, page 322 – Petit Futé Alpes

– Article envoyé par le Laboratoire souterrain de Modane –

Share