• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts


Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Posts Tagged ‘Moriond’

Has CERN discovered a new particle or not? Nobody knows yet, although we are now two steps closer than in December when the first signs of a possible discovery were first revealed.

First step: both the ATLAS and CMS experiments showed yesterday at the Moriond conference that the signal remains after re-analyzing the 2015 data with improved calibrations and reconstruction techniques. The faint signal still stands, even slightly stronger (see the Table). CMS has added new data not included earlier and collected during a magnet malfunction. Thanks to much effort and ingenuity, the reanalysis now includes 20% more data. Meanwhile, ATLAS showed that all data collected at lower energy up to 2012 were also compatible with the presence of a new particle.

The table below shows the results presented by CMS and ATLAS in December 2015 and February 2016. Two hypotheses were tested, assuming different characteristics for the hypothetical new particle: the “spin 0” case corresponds to a new type of Higgs boson, while “spin 2” denotes a graviton.

The label “local” means how strong the new signal appears locally at a mass of 750 or 760 GeV, while “global” refers to the probability of finding a small excess over a broad range of mass values. In physics, statistical fluctuations come and go. One is bound to find a small anomaly when looking all over the place, which is why it is wise to look at the bigger picture. So globally, the excess of events observed so far is still very mild, far from the 5σ criterion required to claim a discovery. The fact that both experiments found it independently is what is so compelling.

table-750GeV

 

But mostly, the second step, we are closer to potentially confirming the presence of a new particle simply because the restart of the Large Hadron Collider is now imminent. New data are expected for the first week of May. Within 2-3 months, both experiments will then know.

We need more data to confirm or refute the existence of a new particle beyond any possible doubt. And that’s what experimental physicists are paid to do: state what is known about Nature’s laws when there is not even the shadow of a doubt.

That does not mean than in the meantime, we are not dreaming since if this were confirmed, it would be the biggest breakthrough in particle physics in decades. Already, there is a frenzy among theorists. As of 1 March, 263 theoretical papers have been written on the subject since everybody is trying to find out what this could be.

Why is this so exciting? If this turns out to be true, it would be the first particle to be discovered outside the Standard Model, the current theoretical framework. The discovery of the Higgs boson in 2012 had been predicted and simply completed an existing theory. This was a feat in itself but a new, unpredicted particle would at long last reveal the nature of a more encompassing theory that everybody suspects exists but that nobody has found yet. Yesterday at the Moriond conference, Alessandro Strumia, a theorist from CERN, also predicted that this particle would probably come with a string of companions.

Theorists have spent years trying to imagine what the new theory could be while experimentalists have deployed heroic efforts, sifting through huge amounts of data looking for the smallest anomaly. No need to say then that the excitement is tangible at CERN right now as everybody is holding their breath, waiting for new data.

Pauline Gagnon

To learn more about particle physics and what might be discovered at the LHC, don’t miss my upcoming book : « Who cares about particle physics : Making sense of the Higgs boson, Large Hadron Collider and CERN »

To be alerted of new postings, follow me on Twitter: @GagnonPauline  or sign-up on this mailing list to receive an e-mail notification.

Share

Le CERN a-t-il découvert une nouvelle particule ou pas? Personne ne le sait encore, bien que nous ayons maintenant fait deux pas de plus depuis le dévoilement des premiers signes d’une possible découverte en décembre.

Premier pas : les expériences ATLAS et CMS ont montré hier à la conférence de Moriond que les signes d’un signal persistent après la réanalyse des données de 2015 à l’aide de calibrations et de techniques de reconstruction améliorées. Le faible signal est même légèrement renforci (voir tableau). CMS a ajouté de nouvelles données recueillies durant une défaillance de leur aimant. Après beaucoup d’efforts et d’ingéniosité, ceci ajoute 20 % de données supplémentaires. De son côté, ATLAS a montré que toutes les données accumulées à moindre énergie jusqu’à 2012 étaient aussi compatibles avec la présence d’une nouvelle particule.

Le tableau ci-dessous montre les résultats présentés par CMS et ATLAS en décembre 2015 et février 2016. Deux hypothèses ont été testées, chacune correspondant à des caractéristiques différentes pour cette hypothétique particule : “spin 0” correspond à un nouveau type de boson de Higgs, tandis que “spin 2” dénote un graviton.

Local” se réfère à l’intensité du signal lorsque mesuré pour une particule ayant une masse de 750 ou 760 GeV, tandis que “global” indique la probabilité de trouver un petit excès sur une large gamme de valeurs de masse. En physique, les fluctuations statistiques sont monnaies courantes. On trouve toujours une petite anomalie lorsqu’on cherche dans tous les coins. Il est donc sage de prendre en compte un intervalle élargi. Globalement donc, l’excédent d’événements observé est toujours très limité. On est encore bien loin de la barre des 5σ, le critère utilisé pour une découverte. Ce qui est très fort par contre, c’est que les deux expériences l’ont trouvé indépendamment.

tableau-750GeV

Le deuxième et bien plus grand pas franchi, c’est que la confirmation possible de la présence d’une nouvelle particule se rapproche simplement parce que la reprise du Grand Collisionneur de Hadrons est imminente. On attend les nouvelles données début mai. Dans 2 ou 3 mois, les deux expériences connaîtront enfin la réponse

Mais sans plus de données, impossible de confirmer ou réfuter l’existence d’une nouvelle particule avec certitude. Et c’est justement pour cela qu’on paie les physiciens et physiciennes: déterminer les lois de la Nature sans qu’il ne subsiste l’ombre d’un doute.

Cela n’empêche personne de rêver en attendant, car si ceci était confirmé, ce serait la plus grande percée en physique des particules depuis des décennies. Déjà, la frénésie s’est emparée des théoriciens et théoriciennes. On comptait en date du premier mars 263 articles théoriques sur le sujet. Tout le monde essaye de déterminer ce que cela pourrait être.

Pourquoi est-ce si passionnant ? Si elle existe, ce serait la première particule à être découverte à l’extérieur du Modèle Standard, la théorie actuelle. La découverte du boson de Higgs en 2012 avait été prévue et avait simplement complété une théorie existante. Un exploit, bien sûr, mais la découverte d’une particule imprévue révèlerait enfin la nature d’une théorie plus vaste dont tout le monde soupçonne l’existence, mais qui n’a pas encore été trouvée. Hier à la conférence de Moriond, Alessandro Strumia, un théoricien du CERN, a prédit que cette particule s’accompagnerait probablement d’une kyrielle de nouvelles particules.

Les théoriciens et théoriciennes ont passé des années à essayer d’imaginer cette nouvelle théorie tandis que du côté expérimental, on a déployé des efforts héroïques à trier des quantités faramineuses de données à la recherche de la moindre anomalie. Nul besoin de dire que l’atmosphère est fébrile en ce moment au CERN; tout le monde retient son souffle en attendant les nouvelles données.

Pauline Gagnon

Pour en savoir plus sur la physique des particules et les enjeux du LHC, consultez mon livre : « Qu’est-ce que le boson de Higgs mange en hiver et autres détails essentiels», en librairie en France et en Suisse dès le 1er mai.

Pour recevoir un avis lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution.

 

Share

Even before my departure to La Thuile in Italy, results from the Rencontres de Moriond conference were already flooding the news feeds. This year’s Electroweak session from 15 to 22 March, started with the first “world measurement” of the top quark mass, from a combination of the measurements published by the Tevatron and LHC experiments so far. The week went on to include a spectacular CMS result on the Higgs width.

Although nearing its 50th anniversary, Moriond has kept its edge. Despite the growing numbers of must-attend HEP conferences, Moriond retains a prime spot in the community. This is in part due to historic reasons: it’s been around since 1966, making a name for itself as the place where theorists and experimentalists come to see and be seen. Let’s take a look at what the LHC experiments had in store for us this year…

New Results­­­

Stealing the show at this year’s Moriond was, of course, the announcement of the best constraint yet of the Higgs width at < 17 MeV with 95% confidence reported in both Moriond sessions by the CMS experiment. Using a new analysis method based on Higgs decays into two Z particles, the new measurement is some 200 times better than previous results. Discussions surrounding the constraint focussed heavily on the new methodology used in the analysis. What assumptions were needed? Could the same technique be applied to Higgs to WW bosons? How would this new width influence theoretical models for New Physics? We’ll be sure to find out at next year’s Moriond…

The announcement of the first global combination of the top quark mass also generated a lot of buzz. Bringing together Tevatron and LHC data, the result is the world’s best value yet at 173.34 ± 0.76 GeV/c2.  Before the dust had settled, at the Moriond QCD session, CMS announced a new preliminary result based on the full data set collected at 7 and 8 TeV. The precision of this result alone rivals the world average, clearly demonstrating that we have yet to see the ultimate attainable precision on the top mass.

ot0172hThis graphic shows the four individual top quark mass measurements published by the ATLAS, CDF, CMS and DZero collaborations, together with the most precise measurement obtained in a joint analysis.

Other news of the top quark included new LHC precision measurements of its spin and polarisation, as well as new ATLAS results of the single top-quark cross section in the t-channel presented by Kate Shaw on Tuesday 25 March. Run II of the LHC is set to further improve our understanding of this

A fundamental and challenging measurement that probes the nature of electroweak symmetry breaking mediated by the Brout–Englert–Higgs mechanism is the scattering of two massive vector bosons against each other. Although rare, in the absence of the Higgs boson, the rate of this process would strongly rise with the collision energy, eventually breaking physical law. Evidence for electroweak vector boson scattering was detected for the first time by ATLAS in events with two leptons of the same charge and two jets exhibiting large difference in rapidity.

With the rise of statistics and increasing understanding of their data, the LHC experiments are attacking rare and difficult multi-body final states involving the Higgs boson. ATLAS presented a prime example of this, with a new result in the search for Higgs production in association with two top quarks, and decaying into a pair of b-quarks. With an expected limit of 2.6 times the Standard Model expectation in this channel alone, and an observed relative signal strength of 1.7 ± 1.4, the expectations are high for the forthcoming high-energy run of the LHC, where the rate of this process is enhanced.

Meanwhile, over in the heavy flavour world, the LHCb experiment presented further analyses of the unique exotic state X(3872). The experiment provided unambiguous confirmation of its quantum numbers JPC to be 1++, as well as evidence for its decay into ψ(2S)γ.

Explorations of the Quark-Gluon Plasma continue in the ALICE experiment, with results from the LHC’s lead-proton (p-Pb) run dominating discussions. In particular, the newly observed “double-ridge” in p-Pb is being studied in depth, with explorations of its jet peak, mass distribution and charge dependence presented.

New explorations

Taking advantage of our new understanding of the Higgs boson, the era of precision Higgs physics is now in full swing at the LHC. As well as improving our knowledge of Higgs properties – for example, measuring its spin and width – precise measurements of the Higgs’ interactions and decays are well underway. Results for searches for Beyond Standard Model (BSM) physics were also presented, as the LHC experiments continue to strongly invest in searches for Supersymmetry.

In the Higgs sector, many researchers hope to detect the supersymmetric cousins of the Higgs and electroweak bosons, so-called neutralinos and charginos, via electroweak processes. ATLAS presented two new papers summarising extensive searches for these particles. The absence of a significant signal was used to set limits excluding charginos and neutralinos up to a mass of 700 GeV – if they decay through intermediate supersymmetric partners of leptons – and up to a mass of 420 GeV – when decaying through Standard Model bosons only.

Furthermore, for the first time, a sensitive search for the most challenging electroweak mode producing pairs of charginos that decay through W bosons was conducted by ATLAS. Such a mode resembles that of Standard Model pair production of Ws, for which the currently measured rates appear a bit higher than expected.

In this context, CMS has presented new results on the search for the electroweak pair production of higgsinos through their decay into a Higgs (at 125 GeV) and a nearly massless gravitino. The final state sports a distinctive signature of 4 b-quark jets compatible with a double Higgs decay kinematics. A slight excess of candidate events means the experiment cannot exclude a higgsino signal. Upper limits on the signal strength at the level of twice the theoretical prediction are set for higgsino masses between 350 and 450 GeV.

In several Supersymmetry scenarios, charginos can be metastable and could potentially be detected as a long-lived particle. CMS has presented an innovative search for generic long-lived charged particles by mapping their detection efficiency in function of the particle kinematics and energy loss in the tracking system. This study not only allows to set stringent limits for a variety of Supersymmetric models predicting chargino proper lifetime (c*tau) greater than 50cm, but also gives a powerful tool to the theory community to independently test new models foreseeing long lived charged particles.

In the quest to be as general as possible in the search for Supersymmetry, CMS has also presented new results where a large subset of the Supersymmetry parameters, such as the gluino and squark masses, are tested for their statistical compatibility with different experimental measurements. The outcome is a probability map in a 19-dimension space. Notable observations in this map are that models predicting gluino masses below 1.2 TeV and sbottom and stop masses below 700 GeV are strongly disfavoured.

… but no New Physics

Despite careful searches, the most heard phrase at Moriond was unquestionably: “No excess observed – consistent with the Standard Model”. Hope now lies with the next run of the LHC at 13 TeV. If you want to find out more about the possibilities of the LHC’s second run, check out the CERN Bulletin article: “Life is good at 13 TeV“.

In addition to the diverse LHC experiment results presented, Tevatron experiments, BICEP, RHIC and other experiments also reported their breaking news at Moriond. Visit the Moriond EW and Moriond QCD conference websites to find out more.

Katarina Anthony-Kittelsen

Share