Warning: file_put_contents(/srv/bindings/215f6720ac674a2d94a96e55caf4a892/code/wp-content/uploads/cache.dat): failed to open stream: No such file or directory in /home/customer/www/quantumdiaries.org/releases/3/web/wp-content/plugins/quantum_diaries_user_pics_header/quantum_diaries_user_pics_header.php on line 170

Posts Tagged ‘new physics’

What is “Model Building”?

Thursday, August 18th, 2016

Hi everyone! It’s been a while since I’ve posted on Quantum Diaries. This post is cross-posted from ParticleBites.

One thing that makes physics, and especially particle physics, is unique in the sciences is the split between theory and experiment. The role of experimentalists is clear: they build and conduct experiments, take data and analyze it using mathematical, statistical, and numerical techniques to separate signal from background. In short, they seem to do all of the real science!

So what is it that theorists do, besides sipping espresso and scribbling on chalk boards? In this post we describe one type of theoretical work called model building. This usually falls under the umbrella of phenomenology, which in physics refers to making connections between mathematically defined theories (or models) of nature and actual experimental observations of nature.

One common scenario is that one experiment observes something unusual: an anomaly. Two things immediately happen:

1. Other experiments find ways to cross-check to see if they can confirm the anomaly.
2. Theorists start figure out the broader implications if the anomaly is real.

#1 is the key step in the scientific method, but in this post we’ll illuminate what #2 actually entails. The scenario looks a little like this:

An unusual experimental result (anomaly) is observed. One thing we would like to know is whether it is consistent with other experimental observations, but these other observations may not be simply related to the anomaly.

Theorists, who have spent plenty of time mulling over the open questions in physics, are ready to apply their favorite models of new physics to see if they fit. These are the models that they know lead to elegant mathematical results, like grand unification or a solution to the Hierarchy problem. Sometimes theorists are more utilitarian, and start with “do it all” Swiss army knife theories called effective theories (or simplified models) and see if they can explain the anomaly in the context of existing constraints.

Here’s what usually happens:

Usually the nicest models of new physics don’t fit! In the explicit example, the minimal supersymmetric Standard Model doesn’t include a good candidate to explain the 750 GeV diphoton bump.

Indeed, usually one needs to get creative and modify the nice-and-elegant theory to make sure it can explain the anomaly while avoiding other experimental constraints. This makes the theory a little less elegant, but sometimes nature isn’t elegant.

Candidate theory extended with a module (in this case, an additional particle). This additional model is “bolted on” to the theory to make it fit the experimental observations.

Now we’re feeling pretty good about ourselves. It can take quite a bit of work to hack the well-motivated original theory in a way that both explains the anomaly and avoids all other known experimental observations. A good theory can do a couple of other things:

1. It points the way to future experiments that can test it.
2. It can use the additional structure to explain other anomalies.

The picture for #2 is as follows:

A good hack to a theory can explain multiple anomalies. Sometimes that makes the hack a little more cumbersome. Physicists often develop their own sense of ‘taste’ for when a module is elegant enough.

Even at this stage, there can be a lot of really neat physics to be learned. Model-builders can develop a reputation for particularly clever, minimal, or inspired modules. If a module is really successful, then people will start to think about it as part of a pre-packaged deal:

A really successful hack may eventually be thought of as it’s own variant of the original theory.

Model-smithing is a craft that blends together a lot of the fun of understanding how physics works—which bits of common wisdom can be bent or broken to accommodate an unexpected experimental result? Is it possible to find a simpler theory that can explain more observations? Are the observations pointing to an even deeper guiding principle?

Of course—we should also say that sometimes, while theorists are having fun developing their favorite models, other experimentalists have gone on to refute the original anomaly.

Sometimes anomalies go away and the models built to explain them don’t hold together.

But here’s the mark of a really, really good model: even if the anomaly goes away and the particular model falls out of favor, a good model will have taught other physicists something really neat about what can be done within the a given theoretical framework. Physicists get a feel for the kinds of modules that are out in the market (like an app store) and they develop a library of tricks to attack future anomalies. And if one is really fortunate, these insights can point the way to even bigger connections between physical principles.

I cannot help but end this post without one of my favorite physics jokes, courtesy of T. Tait:

A theorist and an experimentalist are having coffee. The theorist is really excited, she tells the experimentalist, “I’ve got it—it’s a model that’s elegant, explains everything, and it’s completely predictive.”The experimentalist listens to her colleague’s idea and realizes how to test those predictions. She writes several grant applications, hires a team of postdocs and graduate students, trains them,  and builds the new experiment. After years of design, labor, and testing, the machine is ready to take data. They run for several months, and the experimentalist pores over the results.

The experimentalist knocks on the theorist’s door the next day and says, “I’m sorry—the experiment doesn’t find what you were predicting. The theory is dead.”

The theorist frowns a bit: “What a shame. Did you know I spent three whole weeks of my life writing that paper?”

Enough data to explore the unknown

Friday, June 17th, 2016

The Large Hadron Collider (LHC) at CERN has already delivered more high energy data than it had in 2015. To put this in numbers, the LHC has produced 4.8 fb-1, compared to 4.2 fb-1 last year, where fb-1 represents one inverse femtobarn, the unit used to evaluate the data sample size. This was achieved in just one and a half month compared to five months of operation last year.

With this data at hand, and the projected 20-30 fb-1 until November, both the ATLAS and CMS experiments can now explore new territories and, among other things, cross-check on the intriguing events they reported having found at the end of 2015. If this particular effect is confirmed, it would reveal the presence of a new particle with a mass of 750 GeV, six times the mass of the Higgs boson. Unfortunately, there was not enough data in 2015 to get a clear answer. The LHC had a slow restart last year following two years of major improvements to raise its energy reach. But if the current performance continues, the discovery potential will increase tremendously. All this to say that everyone is keeping their fingers crossed.

If any new particle were found, it would open the doors to bright new horizons in particle physics. Unlike the discovery of the Higgs boson in 2012, if the LHC experiments discover a anomaly or a new particle, it would bring a new understanding of the basic constituents of matter and how they interact. The Higgs boson was the last missing piece of the current theoretical model, called the Standard Model. This model can no longer accommodate new particles. However, it has been known for decades that this model is flawed, but so far, theorists have been unable to predict which theory should replace it and experimentalists have failed to find the slightest concrete signs from a broader theory. We need new experimental evidence to move forward.

Although the new data is already being reconstructed and calibrated, it will remain “blinded” until a few days prior to August 3, the opening date of the International Conference on High Energy Physics. This means that until then, the region where this new particle could be remains masked to prevent biasing the data reconstruction process. The same selection criteria that were used for last year data will then be applied to the new data. If a similar excess is still observed at 750 GeV in the 2016 data, the presence of a new particle will make no doubt.

Even if this particular excess turns out to be just a statistical fluctuation, the bane of physicists’ existence, there will still be enough data to explore a wealth of possibilities. Meanwhile, you can follow the LHC activities live or watch CMS and ATLAS data samples grow. I will not be available to report on the news from the conference in August due to hiking duties, but if anything new is announced, even I expect to hear its echo reverberating in the Alps.

Pauline Gagnon

To find out more about particle physics, check out my book « Who Cares about Particle Physics: making sense of the Higgs boson, the Large Hadron Collider and CERN », which can already be ordered from Oxford University Press. In bookstores after 21 July. Easy to read: I understood everything!

The total amount of data delivered in 2016 at an energy of 13 TeV to the experiments by the LHC (blue graph) and recorded by CMS (yellow graph) as of 17 June. One fb-1 of data is equivalent to 1000 pb-1.

Two steps closer to a possible discovery

Friday, March 18th, 2016

Has CERN discovered a new particle or not? Nobody knows yet, although we are now two steps closer than in December when the first signs of a possible discovery were first revealed.

First step: both the ATLAS and CMS experiments showed yesterday at the Moriond conference that the signal remains after re-analyzing the 2015 data with improved calibrations and reconstruction techniques. The faint signal still stands, even slightly stronger (see the Table). CMS has added new data not included earlier and collected during a magnet malfunction. Thanks to much effort and ingenuity, the reanalysis now includes 20% more data. Meanwhile, ATLAS showed that all data collected at lower energy up to 2012 were also compatible with the presence of a new particle.

The table below shows the results presented by CMS and ATLAS in December 2015 and February 2016. Two hypotheses were tested, assuming different characteristics for the hypothetical new particle: the “spin 0” case corresponds to a new type of Higgs boson, while “spin 2” denotes a graviton.

The label “local” means how strong the new signal appears locally at a mass of 750 or 760 GeV, while “global” refers to the probability of finding a small excess over a broad range of mass values. In physics, statistical fluctuations come and go. One is bound to find a small anomaly when looking all over the place, which is why it is wise to look at the bigger picture. So globally, the excess of events observed so far is still very mild, far from the 5σ criterion required to claim a discovery. The fact that both experiments found it independently is what is so compelling.

But mostly, the second step, we are closer to potentially confirming the presence of a new particle simply because the restart of the Large Hadron Collider is now imminent. New data are expected for the first week of May. Within 2-3 months, both experiments will then know.

We need more data to confirm or refute the existence of a new particle beyond any possible doubt. And that’s what experimental physicists are paid to do: state what is known about Nature’s laws when there is not even the shadow of a doubt.

That does not mean than in the meantime, we are not dreaming since if this were confirmed, it would be the biggest breakthrough in particle physics in decades. Already, there is a frenzy among theorists. As of 1 March, 263 theoretical papers have been written on the subject since everybody is trying to find out what this could be.

Why is this so exciting? If this turns out to be true, it would be the first particle to be discovered outside the Standard Model, the current theoretical framework. The discovery of the Higgs boson in 2012 had been predicted and simply completed an existing theory. This was a feat in itself but a new, unpredicted particle would at long last reveal the nature of a more encompassing theory that everybody suspects exists but that nobody has found yet. Yesterday at the Moriond conference, Alessandro Strumia, a theorist from CERN, also predicted that this particle would probably come with a string of companions.

Theorists have spent years trying to imagine what the new theory could be while experimentalists have deployed heroic efforts, sifting through huge amounts of data looking for the smallest anomaly. No need to say then that the excitement is tangible at CERN right now as everybody is holding their breath, waiting for new data.

Pauline Gagnon

To learn more about particle physics and what might be discovered at the LHC, don’t miss my upcoming book : « Who cares about particle physics : Making sense of the Higgs boson, Large Hadron Collider and CERN »

To be alerted of new postings, follow me on Twitter: @GagnonPauline  or sign-up on this mailing list to receive an e-mail notification.

Frenzy among theorists

Thursday, February 4th, 2016

Since December 15, I have counted 200 new theoretical papers, each one suggesting one or several possible explanations for a new particle not yet discovered. This flurry of activity started when the CMS and ATLAS Collaborations both reported having found a few events that could possibly reveal the presence of a new particle decaying to two photons. Its mass would be around 750 GeV, that is, five times the mass of the Higgs boson.

No one knows yet if all this excitement is granted but it clearly illustrates how much physicists are hoping for a huge discovery in the coming years. Will it be like with the Higgs boson, which was officially discovered in July 2012 but had already given some faint signs of its presence a year earlier? Right now, there is not enough data. And just as I wrote in July 2011, it is as if we were trying to guess if the train is coming by looking in the far distance on a grey winter day. Only time will tell if the indistinct shape barely visible above the horizon is the long awaited train or just an illusion. But until more data become available, everybody will keep their eyes on that spot.

The noon train, Jean-Paul Lemieux, National Gallery of Canada

Due to the difficulties inherent to the restart of the LHC at higher energy, the amount of data collected at 13 TeV in 2015 by ATLAS and CMS was very limited. Given that small data samples are always prone to large statistical fluctuations, the experimentalists exerted much caution when they presented these results, clearly stating that any claim was premature.

But theorists, who have been craving for signs of something new for decades, jumped on it. Within a single month, including the end-of-the-year holiday period, 170 theoretical papers were published to suggest just as many possible different interpretations for this yet undiscovered new particle.

No new data will come for a few more months due to annual maintenance. The Large Hadron Collider is due to restart on March 21 and should deliver the first collisions to the experiments around April 18. The hope is to collect a data sample of 30 fb-1 in 2016, to be compared with about 4 fb-1 in 2015. Later this summer, when more data will be available, we will know if this new particle exists or not.

This possibility is however extremely exciting since the Standard Model of particle physics is now complete. All expected particles have been found. But since this model leaves many open questions, theorists are convinced that there ought to be a more encompassing theory. Hence, discovering a new particle or measuring anything with a value different from its predicted value would reveal at long last what the new physics beyond the Standard Model could be.

No one knows yet what form this new physics will take. This is why so many different theoretical explanations have been proposed for this possible new particle. I have compiled some of them in the table below. Many of these papers described the properties needed by a new boson to fit the actual data. The solutions proposed are incredibly diversified, the most recurrent ones being various versions of dark matter or supersymmetric, new gauge symmetries, Hidden Valley, Grand Unified Theory, extra or composite Higgs bosons and extra dimensions. There enough to suit every taste: axizillas, dilatons, dark pion cousins of a G-parity odd WIMP, one-family walking technipion or trinification.

It is therefore crystal clear: it could be anything or nothing at all… But every time accelerators have gone up in energy, new discoveries have been made. So we could be in for a hot summer.

Pauline Gagnon

Learn more on particle physics, don’t miss my book, which will come out in English in July.

To be alerted of new postings, follow me on Twitter: @GagnonPauline  or sign-up on this mailing list to receive an e-mail notification.

A partial summary of the number of papers published so far with the type of solutions they proposed to explain the nature of the new particle, if new particle there is. Just about all known theoretical models can be adapted to produce a new particle with characteristics compatible with the few events observed. This is just indicative and by no means, strictly exact since many proposals were rather hard to categorize. Will one of these ideas be the right one?

If, and really only if…

Wednesday, December 16th, 2015

If the LHC were a ladder and the new sought-after particles, boxes hidden on the top shelves, operating the LHC at higher energy is like having a longer ladder giving us access to the higher shelves. By the end of 2012, our ladders were shorter but we had 10 times more than now. ATLAS and CMS just had their first glimpse at a place never reached before but more data is still needed to explore this space thoroughly.

On December 15, at the End-of-the-Year seminar, the CMS and ATLAS experiments from CERN presented their first results using the brand new data accumulated in 2015 since the restart of the Large Hadron Collider (LHC) at 13 TeV, the highest operating energy so far. Although the size of the data sample is still only one tenth of what was available at lower energy (namely 4 fb-1 for ATLAS and 2.8-1 fb for CMS collected at 13 TeV compared to 25 fb-1 at 8 TeV for each experiment), it has put hypothetical massive particles within reach.

Both experiments showed how well their detectors performed after several major improvements, including collecting data at twice the rate used in 2012. The two groups made several checks on how known particles behave at higher energy, finding no anomalies. But it is in searches for new, heavier particles that every one hopes to see something exciting. Both groups explored dozens of different possibilities, sifting through billions of events.

Each event is a snapshot of what happens when two protons collide in the LHC. The energy released by the collision materializes into some heavy and unstable particle that breaks apart mere instants later, giving rise to a mini firework. By catching, identifying and regrouping all particles that fly apart from the collision point, one can reconstruct the original particles that were produced.

Both CMS and ATLAS found small excesses when selecting events containing two photons. In several events, the two photons seem to come from the decay of a particle having a mass around 750 GeV, that is, 750 times heavier than a proton or 6 times the mass of a Higgs boson. Since the two experiments looked at dozens of different combinations, checking dozens of mass values for each combination, such small statistical fluctuations are always expected.

Top part: the combined mass given in units of GeV for all pairs of photons found in the 13 TeV data by ATLAS. The red curve shows what is expected from random sources (i.e. the background). The black dots correspond to data and the lines, the experimental errors. The small bump at 750 GeV is what is now intriguing. The bottom plot shows the difference between black dots (data) and red curve (background), clearly showing a small excess of 3.6σ or 3.6 times the experimental error. When one takes into account all possible fluctuations at all mass values, the significance is only 2.0σ

What’s intriguing here is that both groups found the same thing at exactly the same place, without having consulted each other and using selection techniques designed not to bias the data. Nevertheless, both experimental groups are extremely cautious, stating that a statistical fluctuation is always possible until more data is available to check this with increased accuracy.

CMS has slightly less data than ATLAS at 13 TeV and hence, sees a much smaller effect. In their 13 TeV data alone, the excess at 760 GeV is about 2.6σ, 3σ when combined with the 8 TeV data. But instead of just evaluating this probability alone, experimentalists prefer take into account the fluctuations in all mass bins considered. Then the significance is only 1.2σ, nothing to write home about. This “look-elsewhere effect” takes into account that one is bound to see a fluctuation somewhere when ones look in so many places.

Theorists show less restrain. For decades, they have known that the Standard Model, the current theoretical model of particle physics, is flawed and have been looking for a clue from experimental data to go further. Many of them have been hard at work all night and eight new papers appeared this morning, proposing different explanations on which new particle could be there, if something ever proves to be there. Some think it could be a particle related to Dark Matter, others think it could be another type of Higgs boson predicted by Supersymmetry or even signs of extra dimensions. Others offer that it could only come from a second and heavier particle. All suggest something beyond the Standard Model.

Two things are sure: the number of theoretical papers in the coming weeks will explode. But establishing the discovery of a new particle will require more data. With some luck, we could know more by next Summer after the LHC delivers more data. Until then, it remains pure speculation.

This being said, let’s not forget that the Higgs boson made its entry in a similar fashion. The first signs of its existence appeared in July 2011. With more data, they became clearer in December 2011 at a similar End-of-the-Year seminar. But it was only once enough data had been collected and analysed in July 2012 that its discovery made no doubt. Opening one’s gifts before Christmas is never a good idea.

Have a good Holiday Season, Pauline Gagnon

To learn more about particle physics and what might be discovered at the LHC, don’t miss my upcoming book : « Who cares about particle physics : Making sense of the Higgs boson, Large Hadron Collider and CERN ». To be alerted of new postings, follow me on Twitter: @GagnonPauline  or sign-up on this mailing list to receive an e-mail notification.

In search of the secret passage

Wednesday, June 3rd, 2015

Today begins the second operation period of the Large Hadron Collider (LHC) at CERN. By declaring “stable beams”, the LHC operators signal to physicists it is now safe to turn all their detectors on. After more than two years of intensive repair and consolidation work, the LHC now operates at higher energy. What do we hope to achieve?

The discovery of the Higgs boson in July 2012 completed the Standard Model of particle physics. This theoretical model describes all matter seen around us, both on Earth and in all stars and galaxies. But this is precisely the problem: this model only applies to what is visible in the Universe, namely 5% of its content in matter and energy. The rest consists of dark matter (27%) and dark energy (68%), two absolutely unknown substances. Hence the need for a more encompassing theory. But what is it and how can it be reached?

By operating the LHC at 13 TeV, we now have much more energy available to produce new particles than during the 2010-2012 period, when the proton collisions occurred at 8 TeV. Given that energy and mass are two forms of the same essence, the energy released during these collisions materialises, producing new particles. Having more energy means one can now produce heavier particles. It is as if one’s budget just went from 8000 euro to 13000 euro. We can “afford” bigger particles if they exist in Nature.

The Standard Model tells us that all matter is built from twelve basic particles, just like a construction set consisting of twelve basic building blocks and some “connectors” linking them together. These connectors are other particles associated with the fundamental forces. Since none of these particles has the properties of dark matter, there must still be undiscovered particles.

Which theory will allow us to go beyond the Standard Model? Will it be Supersymmetry, one of the numerous theoretical hypotheses currently under study. This theory would unify the particles of matter with the particles associated with the fundamental forces. But Supersymmetry implies the existence of numerous new particles, none of which has been found yet.

Will the LHC operating at 13 TeV allow us to produce some of these supersymmetric particles? Or will the entrance of the secret passage towards this “new physics” be revealed by meticulously studying a plethora of quantities, such as the properties of the Higgs boson. Will we discover that it establishes a link between ordinary matter (everything described by the Standard Model) and dark matter?

These are some of the many questions the LHC could clarify in the coming years. An experimental discovery would reveal the new physics. We might very well be on the verge of a huge scientific revolution.

For more information about particle physics and my book, see my website

Top quark still raising questions

Wednesday, October 15th, 2014

This article appeared in symmetry on Oct. 15, 2014.

Why are scientists still interested in the heaviest fundamental particle nearly 20 years after its discovery? Photo: Reidar Hahn, Fermilab

“What happens to a quark deferred?” the poet Langston Hughes may have asked, had he been a physicist. If scientists lost interest in a particle after its discovery, much of what it could show us about the universe would remain hidden. A niche of scientists, therefore, stay dedicated to intimately understanding its properties.

Case in point: Top 2014, an annual workshop on top quark physics, recently convened in Cannes, France, to address the latest questions and scientific results surrounding the heavyweight particle discovered in 1995 (early top quark event pictured above).

Top and Higgs: a dynamic duo?
A major question addressed at the workshop, held from September 29 to October 3, was whether top quarks have a special connection with Higgs bosons. The two particles, weighing in at about 173 and 125 billion electronvolts, respectively, dwarf other fundamental particles (the bottom quark, for example, has a mass of about 4 billion electronvolts and a whole proton sits at just below 1 billion electronvolts).

Prevailing theory dictates that particles gain mass through interactions with the Higgs field, so why do top quarks interact so much more with the Higgs than do any other known particles?

Direct measurements of top-Higgs interactions depend on recording collisions that produce the two side-by-side. This hasn’t happened yet at high enough rates to be seen; these events theoretically require higher energies than the Tevatron or even the LHC’s initial run could supply. But scientists are hopeful for results from the next run at the LHC.

“We are already seeing a few tantalizing hints,” says Martijn Mulders, staff scientist at CERN. “After a year of data-taking at the higher energy, we expect to see a clear signal.” No one knows for sure until it happens, though, so Mulders and the rest of the top quark community are waiting anxiously.

A sensitive probe to new physics

Top and antitop quark production at colliders, measured very precisely, started to reveal some deviations from expected values. But in the last year, theorists have responded by calculating an unprecedented layer of mathematical corrections, which refined the expectation and promise to realigned the slightly rogue numbers.

Precision is an important, ongoing effort. If researchers aren’t able to reconcile such deviations, the logical conclusion is that the difference represents something they don’t know about — new particles, new interactions, new physics beyond the Standard Model.

The challenge of extremely precise measurements can also drive the formation of new research alliances. Earlier this year, the first Fermilab-CERN joint announcement of collaborative results set a world standard for the mass of the top quark.

Such accuracy hones methods applied to other questions in physics, too, the same way that research on W bosons, discovered in 1983, led to the methods Mulders began using to measure the top quark mass in 2005. In fact, top quark production is now so well controlled that it has become a tool itself to study detectors.

Forward-backward synergy

With the upcoming restart in 2015, the LHC will produce millions of top quarks, giving researchers troves of data to further physics. But scientists will still need to factor in the background noise and data-skewing inherent in the instruments themselves, called systematic uncertainty.

“The CDF and DZero experiments at the Tevatron are mature,” says Andreas Jung, senior postdoc at Fermilab. “It’s shut down, so the understanding of the detectors is very good, and thus the control of systematic uncertainties is also very good.”

Jung has been combing through the old data with his colleagues and publishing new results, even though the Tevatron hasn’t collided particles since 2011. The two labs combined their respective strengths to produce their joint results, but scientists still have much to learn about the top quark, and a new arsenal of tools to accomplish it.

“DZero published a paper in Nature in 2004 about the measurement of the top quark mass that was based on 22 events,” Mulders says. “And now we are working with millions of events. It’s incredible to see how things have evolved over the years.”

Troy Rummler

Two anomalies worth noticing

Monday, July 14th, 2014

The 37th International Conference on High Energy Physics just finished in Valencia, Spain. This year, no big surprises were announced: no new boson, no signs from new particles or clear phenomena revealing the nature of dark matter or new theories such as Supersymmetry. But as always, a few small anomalies were reported.

Looking for deviations from the theoretical predictions is precisely how experimentalists are trying to find a way to reveal “new physics”. It would help discover a more encompassing theory since everybody realises the current theoretical model, the Standard Model, has its limits and must be superseded by something else. However, all physicists know that small deviations often come and go. All measurements made in physics follow statistical laws. Therefore deviations from the expected value by one standard deviation occur in three measurements out of ten. Larger deviations are less common but still possible. A two standard deviation happens 5% of the time. Then there are systematic uncertainties that relate to the experimental equipment. These are not purely statistical, but can be improved with a better understanding of our detectors. The total experimental uncertainty quoted with each result corresponds to one standard variation. Here are two small anomalies reported at this conference that attracted attention this year.

The ATLAS Collaboration showed its preliminary result on the production of a pair of W bosons. Measuring this rate provides excellent checks of the Standard Model since theorists can predict how often pairs of W bosons are produced when protons collide in the Large Hadron Collider (LHC). The production rate depends on the energy released during these collisions. So far, two measurements can be made since the LHC operated at two different energies, namely 7 TeV and 8 TeV.

CMS and ATLAS had already released their results on their 7 TeV data. The measured rates exceeded slightly the theoretical prediction but were both well within their experimental error with a deviation of 1.0 and 1.4 standard deviation, respectively. CMS had also published results based on about 20% of all data collected at 8 TeV. It exceeded slightly the theoretical prediction by 1.7 standard deviation. The latest ATLAS result adds one more element to the picture. It is based on the full 8 TeV data sample. Now ATLAS reports a slightly stronger deviation for this rate at 8 TeV with 2.1 standard deviations from the theoretical prediction.

The four experimental measurements for the WW production rate (black dots) with the experimental uncertainty (horizontal bar) as well as the current theoretical prediction (blue triangle) with its own uncertainty (blue strip). One can see that all measurements are higher than the current prediction, indicating that the theoretical calculation fails to include everything.

The four individual measurements are each reasonably consistent with expectation, but the fact that all four measurements lie above the predictions becomes intriguing. Most likely, this means that theorists have not yet taken into account all the small corrections required by the Standard Model to precisely determine this rate. This would be like having forgotten a few small expenses in one’s budget, leading to an unexplained deficit at the end of the month. Moreover, there could be common factors in the experimental uncertainties, which would lower the overall significance of this anomaly. But if the theoretical predictions remain what they are even when adding all possible little corrections, it could indicate the existence of new phenomena, which would be exciting. It would then be something to watch for when the LHC resumes operation in 2015 at 13 TeV.

The CMS Collaboration presented another intriguing result. They found some events consistent with coming from a decay of a Higgs boson into a tau and a muon. Such decays are prohibited in the Standard Model since they violate lepton flavour conservation. There are three “flavours” or types of charged leptons (a category of fundamental particles): the electron, the muon and the tau. Each one comes with its own type of neutrinos. According to all observations made so far, leptons are always produced either with their own neutrino or with their antiparticle. Hence, the decay of a Higgs boson in leptons should always produce a charged lepton and its antiparticle, but never two charged leptons of different flavour. Violating a conservation laws in particle physics is simply not allowed.

This needs to be scrutinised with more data, which will be possible when the LHC resumes next year. Lepton flavour violation is allowed outside the Standard Model in various models such as models with more than one Higgs doublet or composite Higgs models or Randall-Sundrum models of extra dimensions for example. So if both ATLAS and CMS confirm this trend as a real effect, it would be a small revolution.

The results obtained by the CMS Collaboration showing that six different channels all give a non-zero value for the decay rate of Higgs boson into pairs of tau and muon.

Pauline Gagnon

To be alerted of new postings, follow me on Twitter: @GagnonPauline  or sign-up on this mailing list to receive and e-mail notification.

The International Linear Collider: More than Just a Higgs Factory

Friday, August 23rd, 2013

The ILC site has been chosen. What does this mean for Japan?

The two ILC candidate sites: Sefuri in the South and Kitakami in the North. Credit: linearcollider.org

Hi Folks,

It is official [Japanese1,Japanese2]: the Linear Collider Collaboration and the Japanese physics community have selected the Kitakami mountain range in northern Japan as the site for the proposed International Linear Collider. Kitakami is a located in the Iwate Prefecture and is just north of the Miyagi prefecture, the epicenter of the 2011 Tohoku Earthquake. Having visited the site in June, I cannot aptly express how gorgeous the area is, but more importantly, how well-prepared Iwate City is for this responsibility.

Science is cumulative: new discoveries are used to make more discoveries about how nature works, and physics is no different. The discovery of the Higgs boson at the Large Hadron Collider was a momentous event. With its discovery, physicists proved how some particles have mass and why others have no mass at all. The Higgs boson plays a special role in this process, and after finally finding it, we are determined to learn more about the Higgs. The International Linear Collider (ILC) is a proposed Higgs boson factory that would allow us to intimately understand the Higgs. Spanning 19 miles (31 km) [310 football pitches/soccer fields], if constructed, the ILC will smash together electrons and their antimatter partners, positrons, to produce a Higgs boson (along with a Z boson). In such a clean environment (compared to proton colliders), ultra-precise measurements of the Higgs boson’s properties can be made, and thereby elucidate the nature of this shiny new particle.

The general overview schematic of the International Linear Collider. Credit: linearcollider.org

However, the ILC is more than just a experiment. Designing, constructing, and operating the machine for 20 years will be a huge undertaking with lasting effects. For staters, the collider’s Technical Design Report (TDR), which contains every imaginable detail minus the actual blueprints, estimates the cost of the new accelerator to be 7.8 billion USD (2012 dollars). This is not a bad thing. Supposing 50% of the support came from Asia, 25% from the Americas, and 25% from Europe, that would be nearly 2 billion USD invested in new radio frequency technology in England, Germany, and Italy. In the US, it would be nearly 2 billion USD invested in coastal and Midwestern laboratories developing new cryogenic and superconducting technology. In Asia, this would be nearly 4 billion USD invested in these technologies as well as pure labor and construction. Just as the LHC was a boon on the European economy, a Japanese-based ILC will be a boon for an economy temporarily devastated  by an historic earthquake and tsunami. These are just hypothetical numbers; the real economic impact will be  larger.

I had the opportunity to visit Kitakami this past June as a part of a Higgs workshop hosted by Tohoku University. Many things are worth noting. The first is just how gorgeous the site is. Despite its lush appearance, the site offers several geological advantages, including stability against earthquakes of any size. Despite its proximity to the 2011 earthquake and the subsequent tsunami, this area was naturally protected by the mountains. Below is a photo of the Kitakami mountains that I took while visiting the site. Interestingly, I took the photo from the UNESCO World Heritage site Hiraizumi. The ILC is designed to sit between the two mountains in the picture.

The Kitamaki Mountain Range as seen from the UNESCO World Heritage Site in Hiraizumi, Japan. Credit: Mine

What I want to point out in the picture below is the futuristic-looking set of tracks running across the photo. That is the rail line for the JR East bullet train, aka the Tohoku Shinkansen. In other words, the ILC site neighbours a very major transportation line connecting the Japanese capital Tokyo to the northern coast. It takes the train just over 2 hours to traverse the 250 miles (406.3 km) from Tokyo station to the Ichinoseki station in Iwate. The nearest major city is Sendai, capital of Miyagi, home to the renown Tohoku University, and is only a 10 minute shinkansen ride from Ichinoseki station.

The Kitamaki Mountain Range as seen from the UNESCO World Heritage Site in Hiraizumi, Japan. Credit: Mine

What surprised me is how excited the local community is about the collider. After exiting the Ichinoseki station I discovered this subtle sign of support:

There is much community support for the ILC: The Ichinoseki Shinkansen Station in Iwate Prefecture, Japan. Credit: Mine

The residents of Iwate and Miyagi, independent of any official lobbying organization, have formed their own “ILC Support Committee.” They even have their own facebook page. Over the past year, the residents have invited local university physicists to give public lectures on what the ILC is; they have requested that more English, Chinese, Korean, and Tagalog language classes be offered at local community centers; that more Japanese language classes for foreigners are offered in these same facilities; and have even discussed with city officials how to prepare Iwate for the prospect of a rapid increase in population over the next 20 years.

Despite all this, the real surprises were the pamphlets. Iwate has seriously thought this through.

Pamphlets showcasing the Kitakami Mountain Range in Iwate, Japan. Credit: Mine

The level of detail in the pamphlets is impressive. My favourite pamphlet has the phrase, “Ray of Hope: Tohoku Is Ready to Welcome the ILC” on the front cover. Inside is a list of ways to reach the ILC site and the time it takes. For example: it takes 12 hours 50 minutes to reach Tokyo from Rome and 9 hours 40 minutes from Sydney. The brochure elaborates that the Kitakami mountains maintain roughly the same temperature as Switzerland (except in August-September) but collects much more precipitation through the year. Considering that CERN is located in Geneva, Switzerland, and that many LHC experimentalists will likely become ILC experimentalists, the comparison is very helpful. The at-a-glance annual festival schedule is just icing on the cake.

“Ray of Hope” pamphlet describing how to each different ILC campuses by train.  Credit: Mine

Now that the ILC site has been selected, surveys of the land can be conducted so that blue prints and a finalized cost estimate can be established. From my discussions with people involved in the site selection process, the decision was very difficult. I have not visited the Fukuoka site, though I am told it is a comparably impressive location. It will be a while still before any decision to break ground is made. And until that happens, there is plenty of work to do.

Happy Colliding

– Richard (@bravelittlemuon)

The Take Away Message of Snowmass on the Mississippi

Friday, August 9th, 2013

Snowmass Came and Passed. What have we learned from it?

Skyline of Minneapolis, home of the University of Minnesota and host city of the Community Summer Study 2013: Snowmass on the Mississippi.

Hi All,

Science is big. It is the systematic study of nature, so it has to be big. In another way, science is about asking questions, questions that expands our knowledge of nature just a bit more. Innocuous questions like, “Why do apples fall to the ground?”, “How do magnets work?”, or “How does an electron get its mass?” have lead to understanding much more about the universe than expected. Our jobs as scientists come down to three duties: inventing questions, proposing answers (called hypotheses), and testing these proposals.

As particle physicists, we ask “What is the universe made of?” and “What holds the universe together?”  Finding out that planets and stars only make up 5% of the universe really makes one pause and wonder, well, what about everything else?

From neutrino masses, to the Higgs boson, to the cosmic microwave background, we have learned  much about the origin of mass in the Universe as well as the origin of the Universe itself in the past 10 years. Building on recent discoveries, particle physicists from around the world have been working together for over a year to push our questions further. Progress in science is incremental, and after 10 days at the Community Summer Study 2013: Snowmass on the Mississippi Conference, hosted by the University of Minnesota, we have a collection of questions that will drive and define particle physic for the next 20 years. Each question is an incremental step, but each answer will allow us to expand our knowledge of nature.

I had a chance to speak with SLAC‘s Michael Peskin, a convener for the Snowmass Energy Frontier study group and author of the definitive textbook on Quantum Field Theory, on how he sees the high energy physics community proceeding after Snowmass. “The community did a lot of listening at Snowmass. High energy physics is pursuing a very broad array of questions.  I think that we now appreciate better how important all of these questions are, and that there are real strategies for answering them.”  An important theme of Snowmass, Peskin said, was “the need for long-term, global planning”.  He pointed to the continuing success of the Large Hadron Collider, which is the result of the efforts of thousands of scientists around the world.  This success would not have happened without such a large-scale, global  effort.  “This is how high energy physics will have to be, in all of its subfields, to answer our big questions.”

Summary presentations of all the work done for Snowmass are linked below in pdf form and are divided into two categories: how to approach questions (Frontiers) and what will enable us to answer these questions. These two categories represent the mission of the US Department of Energy’s Office of Science. A summary of the summaries is at the bottom.

What is the absolute neutrino mass scale? What is the neutrino mass ordering? Is CP violated in the neutrino sector? What new knowledge will neutrinos from astrophysical sources bring?

What is dark matter? What is dark energy? Why more matter than anti-matter? What is the physics of the Universe at the highest energies?

Where are the new particles that modify the Higgs, t, W couplings? What particles comprise the dark matter? Why is the Higgs boson so light?

The growth in data drives need for continued R&D investment in data management, data access methods, networking. Challenging resource needs require efficient and flexible use of all resources HEP needs both Distributed High-Throughput computing (experiment program) and High-Performance computing (mostly theory/simulation/modeling)

Encourage and enable physicists to be involved in and support local, national and world-wide efforts that offer long–term professional development and training opportunities for educators (including pre-service educators), using best practice and approaches supported by physics education research. and Create learning opportunities for students of all ages, including classroom, out-of-school and online activities that allow students to explore particle physics

Our vision is for the US to have an instrumentation program for particle physics that enables the US to maintain a scientific leadership position in a broad, global, experimental program; and develops new detection capabilities that provides for cutting edge contributions to a world program

Is dark energy a cosmological constant? Is it a vacuum energy? From where do ultra high energy cosmic rays originate? From where do ultra high energy neutrinos originate?

How would one build a 100 TeV scale hadron collider? How would one build a lepton collider at >1 TeV? Can multi-MW targets survive? If so, for how long?

To provide a conduit for untenured (young) particle physicists to participate in the Community Summer Study. To facilitate and encourage young people to get involved.
Become a long term asset to the field and a place where young peoples voices can be heard

Several great posts from QD (Family, Young, Frontierland), Symmetry Magazine (Push, Q&A, IceSlam, Decade), and even real-time updates from QD’s Ken Bloom (@kenbloomunl) and myself (@bravelittlemuon) via #Snowmass are available. All presentations can be found at the Snowmass Indico page.

Until next time, happy colliding.

– Richard (@bravelittlemuon)

Community Summer Study: Snowmass 2013 Poster