• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘Particle’

This is a follow-up from our last post where Paul Schaffer, Head of the Nuclear Medicine Division at TRIUMF, was talking about his experience of being in the media spotlight. In this post, Paul talks more in-depth about the science of medical isotopes.

It all started 19 months ago. A grant that would forever change my perspective of science geared specifically toward innovating a solution for a critical unmet need—in this situation, it was the global isotope crisis. In 2010, not too long out of the private sector, I was already working on an effort funded by NSERC and CIHR through the BC Cancer Agency to establish the feasibility of producing Tc-99m—the world’s most common medical isotope—on a common medical cyclotron. The idea: produce this isotope where it’s needed, on demand, every day, if and when needed. Sounds good, right? The problem is that the world had come to accept what would have seemed impossible just 50 years ago.

The current Tc-99m production cycle, which uses nuclear reactors. Image courtesy of Nordion.

We are currently using a centralized production model for this isotope with just a six hour half-life. This model involves just a handful of dedicated, government-funded research reactors, producing molybdenum-99 from highly enriched uranium (which is another issue for another time). Moly, as we’ve come to affectionately call it, decays via beta emission to technetium, and when packaged into alumina columns, is sterilized, and encased in a hundred pounds of lead. It is then shipped by the thousands to hospitals around the world. The result: the world has come to accept Tc-99m, which is used in 85% of the 20 to 40 million patient scans every year as an isotope available from a small, 100 pound cylinder that was replaced every week or so, without question, without worry. Moly and her daughter were always there…but in 2007 and again in 2009, suddenly they weren’t. The world had come to realize that something must be done.

In the middle of our NSERC/CIHR effort, we were presented with an opportunity to write a proof-of-concept grant based on the proof-of-feasibility we were actively pursuing. Luckily, the team had come far enough to believe we were on the right track. We believed that large scale curie-level production of Tc-99m using existing cyclotron technology was indeed possible. The ensuing effort was—in contrast to the current way of doing things—ridiculous.

With extensive, continuous input from several top scientists from around the country, I stitched together a document 200 pages long. It was a grant that was supposed to redefine how the most important isotope in nuclear medicine was produced. 200 pages, well 199 to be exact, describing a process—THE process—we were hopefully going to be working on for the next 18 months. We waited…success! And we began.

The effort started the same way as the document – with nothing more than a blank piece of paper. Blank in the sense that we knew what we had to do, we just had not defined exactly how we were going to achieve our goal. But what happened next was a truly remarkable thing; with that blank sheet, I witnessed first-hand a team of people imagine a solution, roll up their sleeves and turn those notions into reality.

If you would like to read the PET report, click here

 

 

Share

Paul Schaffer is the head of the Nuclear Medicine Division at TRIUMF. For the past 18 months, he and his team have been devising a method for Canada and the world to have an alternative way to produce medical isotopes. Currently, these isotopes are created on aging nuclear reactors, which are beginning to show signs of wear by needing emergency repairs. These repairs stop the flow of isotopes, affecting hundreds of thousands of people around the world. This is an inside perspective of what it means to work on the front line, and be in the media spotlight.

I’m going to start this post with the day I had the privilege of standing in front of a group of reporters along with a few of my esteemed colleagues to announce that we had, in fact, delivered on a promise we had made just over a year ago; the promise of making medical isotopes with existing hospital cyclotrons. We had set out to prove that it was possible to produce Tc-99m on a small medical cyclotron and at quantities sufficient to supply a large urban centre. The solution to Tc-99m shortages is to decentralize production. It was an example of Canadian innovation at its best – by taking a group of existing machines in existing facilities already tasked at making various other medical isotopes and extending the functionality of those facilities to produce another isotope.

Paul presenting his team's findings

The response from the press was remarkable to witness. The interest was swift, broad, and far reaching. The 24-hour news cycle had begun and with it came a deluge of requests for radio, TV, and print interviews. In the ensuing days I read a number of wonderful reports from capable reporters, often writing about a topic well outside of their background or familiarity. For that, I admire the work that they collectively pulled together in the short amount of time involved.

Something else happened, though; something I didn’t anticipate – the ensuing media blitz ended up becoming a very personal social experiment, an intense self-examination. On the way to my first-ever national television interview, I can distinctly remember reality sinking in—for most of my life, I’ve dealt with significant hearing loss. In my ever-quiet world, acutely and perpetually punctuated by tinnitus, verbal communication can be a consuming task.

It is a fact that I comprehend only 33% of the words spoken to me and that my brain fills the gaps using whatever facts it can absorb from my surroundings—expressions, moving lips, and other non-verbal cues. In that car on the way to the interview, I couldn’t help but to continuously wonder about how I would handle verbal questions on camera? What do you say on live TV when you can’t for the life of you figure out what your conversational counterpart is saying? My wingman kept reassuring me, giving background from experience and many, many reassuring comments; but deep down I had to wonder, was this the moment when the whole situation would finally come undone? My charade of being able to hear the world around me would finally end. Worse still, had the moment come to sell the team’s amazing accomplishments on national TV, with a significant number of people literally watching; and all I kept wondering was: will it fall apart simply over an unheard or misinterpreted question? Good thing most communication is non-verbal.

The interview ended up being remote, with the reporters in Ontario and a conspicuous 5 second ‘safety’ delay between what I thought I heard and what showed up on the TV monitor facing me. Five seconds was long enough for them to cut out a fleeting wardrobe malfunction, should I become a bit too passionate during my scientific descriptions, but not nearly long enough to spare a poor soul a repeat question. So, seated in a large, empty, and thankfully quiet studio it began with a single chair, bright lights, and an audio test – ‘please count to 5’ came in over the ear piece…this out of context and no non-verbal queue jolted my fear into reality. I couldn’t understand the question. Out of the corner of my eye, I could see my wingman turn a shade lighter. Worry was setting in. The in-studio producer was almost dumbstruck – this ‘expert’ couldn’t count to five.  45 seconds to ‘go’ and he repeated the question. I got it, counted to five….30 seconds….15, an ambulance was coming, getting louder, I couldn’t hear the commercial any longer…..10, the ambulance was on the street directly below. I had to look away from the TV screen, as the delay was overwhelmingly distracting. 5 seconds. The sirens were starting to recede and before you knew it, I was live.

Paul on CTV News

At first I didn’t want to watch the interview, but family, friends and colleagues from across Canada starting chiming in and eventually convinced me to watch. I felt satisfied with the results, relieved that I had heard every question, answered everything without wandering or forgetting what the question was, covering the topics I wanted to cover. However, I was definitely watching an objective projection of somebody I wasn’t familiar with. I won’t get into the details of what I saw – it’d be different for everyone, but the experience has been life altering, as has this project. That said, I’m proud of the team that has worked so well and so hard together for the past 18 months. It’s been a remarkable project on all fronts. Whether our results continue to keep their momentum and become a permanent solution to the isotope issues that plagued us for two years remains to be seen. I do know success when I see it, and this team of Canadian scientists, engineers, and medical professionals should all be immensely proud of what they have done. They are Canadian innovation at its best.

The team of TRIUMF scientists Paul collaborated with on the groundbreaking project

 

Share

Higgs for the Holidays

Friday, December 23rd, 2011

 —  By Theorist David Morrissey & Particle Physicist Anadi Canepa

 Last week we hosted two particle physics workshops at TRIUMF – an ATLAS Canada collaboration meeting and a joint meeting for theorists and experimentalists to study new LHC results.  Everything went smoothly, no participants were lost to the wilds of Vancouver, and we had some really great discussions and seminars.  During one of these presentations, it occurred to me that these kinds of scientific meetings are not so different from a typical holiday gathering.  In both situations, you frequently run into people you know but that you haven’t seen in a long time.  You catch up, you gossip, and you eat too much food at the coffee breaks.  There’s usually a large group dinner where you often meet new people and strike up conversations about future work.  And every so often one of the participants has too much holiday cheer.

Despite these similarities, most scientific meetings don’t involve gifts.  But this time around we were really lucky, and our workshops had a gift exchange of sorts as well.  In this case, the gifts were the presentations by the ATLAS and CMS collaborations of exciting new results from their searches for the Higgs boson particle.  On top of the live streaming presentations from CERN in the early hours of the morning, we were treated to a longer seminar in the afternoon at TRIUMF by Rob McPherson.  His talk was standing-room only, and we had a great time bombarding him with questions about the ATLAS analysis.

The reason for all this excitement over a single particle is that the Higgs boson, first proposed nearly fifty years ago, is central to our current understanding of all known elementary particles, called the Standard Model.  (See here, here, and here for more details.)   In this theory, the Higgs is responsible for creating the masses of nearly all elementary particles and for making the weak force much weaker than electromagnetism.  Even though we have not yet seen the Higgs directly, we have indirect evidence for it from precision measurements of the weak and electromagnetic forces.  Discovering the Higgs boson would confirm the Standard Model, while not finding it would force us to drastically rethink our description of elementary particles and fundamental forces, which would perhaps be an even greater discovery.

 

Excitement about finding the Higgs has been building since the summer, when it became clear that the LHC would be able to collect enough data by the end of the year to possibly find it.  In the past few weeks the level has gone through the roof as rumours started to appear that the LHC experiments would soon release a significant result.  What we learned this week is that these latest searches did not discover the Higgs boson, but that they do suggest that it might be there with a mass close to 133 times that of a proton (125 GeV).  Finding a Higgs is hard work, and its delicate characteristic signal must be extracted from a huge amount of background noise.  What we have at the moment is an intersting bump, as you can see in the figure above taken from the ATLAS search, where we see more signal events than would typically be expected from the background alone for a candidate Higgs mass of about 125 GeV.  We just don’t have enough data right now to confirm that this bump is from a Higgs boson, and not just an especially unlucky spike in the background noise.  Fortunately, the ATLAS and CMS collaborations will be taking much more data in the new year.

So, for this year all we get is a gift-wrapped box that we’re allowed to shake and prod.  But if we’re good, we’ll get to open the box and find what’s inside at some point in 2012.  Dear Santa…


Share