• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘students’

Grad School in the sciences is a life-changing endeavour, so do not be afraid to ask questions.

Hi Folks,

Quantum Diaries is not just a place to learn the latest news in particle physics; it is also a resource. It is a forum for sharing ideas and experiences.

In science, it is almost always necessary to have a PhD, but what is a PhD? It is a certification that the holder has demonstrated unambiguously her or his ability to thoroughly carry out an independent investigation addressing a well-defined question. Unsurprisingly, the journey to earning a PhD is never light work, but nor should it be. Scientists undertake painstaking work to learn about nature, its underpinnings, and all the wonderful phenomena that occur in everyday life. This journey, however, is also filled with unexpected consequences, disappointment, and sometimes even heartbreak.

It is also that time of year again when people start compiling their CVs, resumes, research statements, and personal statements, that time of year when people begin applying for graduate programs. For this post, I have asked a number of good friends and colleagues, from current graduate students to current post docs, what questions they wished they had asked when apply for graduate school, selecting a school, and selecting a research group.

However, if you are interested in applying to for PhD programs, you should always first yourself,  “Why do I want a research degree like a PhD?”

If you have an experience, question, or thought that you would like to share, comment below! A longer list only provides more information for applicants.

As Always, Happy Colliding

– Richard (@bravelittlemuon)

PS I would like to thank Adam, Amy, John, Josh, Lauren, Mike, Riti, and Sam for their contributions.

Applying to Graduate School:

“When scouting for grad schools, I investigated the top 40 schools in my program of interest.  For chemistry, research primarily occurs in one or two research labs, so for each school, I investigated the faculty list and group research pages.  I eliminated any school where there werre fewer than two faculty members whose fields I could see myself pursuing.  This narrowed down my list to about a dozen schools.  I then filtered based on location: I enjoy being near a big city, so I removed any school in a non-ideal location.  This let me with half a dozen schools, to which I applied.” – Adam Weingarten, Chemistry, Northwestern

“If there is faculty member you are interested in working for, ask both the professor and especially the students separately about the average length of time it takes students to graduate, and how long financial support might be available.” – Lauren Jarocha, Chemistry, UNC

“My university has a pretty small physics program that, presently, only specializes in a few areas. A great deal of the research from my lab happens in conjunction with other local institutes (such as NIST and NIH) or with members of the chemistry or biology departments. If you are interested in a smaller department, ask professors about Institutes and interdisciplinary studies that they might have some connection to, be it within academia or industry.” – Marguerite Brown, Physics, Georgetown

“If you can afford the application fees and the time, apply as broadly as you can.  It’s good to have options when it comes time to make final decisions about where to go. That said, don’t aim too high (you want to make sure you have realistic schools on your list, whatever “realistic” means given your grades and experience), and don’t aim too low (don’t waste time and money applying to a school that you wouldn’t go to even if it was the only school that accepted you, whether because of academics, location, or anything else).  Be as honest as possible with yourself on that front and get input from trusted older students and professors.  On the flip side, if you don’t get rejected from at least one or two schools, you didn’t aim high enough.  You want a blend of reach schools and realistic schools.” – Amy Lowitz, Physics, Wisconsin

Choosing a School

“One of the most common mistakes I see prospective graduate students make is choosing their institution based on wanting to work with a specific professor without getting a clear enough idea of the funding situation in that lab.  Don’t just ask the professor about funding.  Also ask their graduate students when the professor isn’t present.  Even then, you may have to read between the lines; funding can be a delicate subject, especially when it is lacking.” – Amy Lowitz, Physics, Wisconsin

“If you have a particular subfield/group you *know* you are interested in, check how many profs/postdocs/grads are in these groups, check if there are likely to be open slots, and if there are only 1 or 2 open slots make sure you know how to secure one. If they tell you there are currently no open slots, take this to mean that this group is probably closed for everything but the most exceptional circumstances, and do not take into account that group when making your decision.” – Samuel Ducatman, Physics, Wisconsin

“When choosing a school, I based my decision on how happy the grad students seemed, how energetic/curious the faculty appeared, and if the location would allow me to have extracurricular pursuits (such as writing, improv, playing games with people, going to the movies…basically a location where I could live in for 4-6 years).” – Adam Weingarten, Chemistry, Northwestern

“At the visitor weekend, pay attention to how happy the [current] grads seem. Remember they are likely to be primarily 1st years, who generally are the most happy, but still check. Pay attention to the other students visiting, some of them will be in your incoming class. Make sure there is a good social vibe.” – Samuel Ducatman, Physics, Wisconsin

“When I was visiting a prospective grad student, there was a professor at a university I was visiting whose research I was really interested in, but the university would only allow tuition support for 5 years. When I asked his students about graduation rates and times, however, the answer I got was, ‘Anyone who graduates in 5 years hasn’t actually learned anything, it takes at least 7 or 8 years before people should really graduate anyway. Seven years is average for our group.’ In some fields, there is a stigma associated with longer graduation times and a financial burden that you may have to plan for in advance.” – Lauren Jarocha, Chemistry, UNC

Choosing a Group

“When considering a sub-field, look for what interests you of course, but bear in mind that many people change their focus, many don’t know exactly what they want to do immediately upon entering grad school, and your picture of the different areas of research may change over time. Ask around among your contemporaries and older students, especially when it comes to particular advisers.” – Joshua Sayre, PhD, Physics, Pittsburgh
“If you know that you’re interested in an academic career that is more teaching oriented or research oriented, ask about teaching or grant writing opportunities, respectively. I know plenty of fellow students who didn’t start asking about teaching opportunities their 4th or 5th year of their program, and often by then it was too late. If you know that finding funding will be a big part of your future, joining a group where the students take an active part in writing grants and grant renewals is invaluable experience.” –  Lauren Jarocha, Chemistry, UNC
“For choosing groups, I attended group and subgroup meetings, met with faculty to discuss research and ideas, and read several recent publications from each group of interest.  What I did not do (and wish I had) was talk with the graduate students, see how they and the group operated.  For example, I am very motivated and curious to try new ideas, so in my current research group my PI plays a minimal role in my life.  The most important aspect is how well one’s working style fits with the group mentality, followed by research interest.  There’s a ton of cool, exciting research going on, but finding a group with fun, happy, motivated people will make or break the PhD experience.” – Adam Weingarten, Chemistry, Northwestern
“I went into [Condensed Matter Theory] and not [X] because (1) In the summer of my first year I had no research, and I came close to having no income because of this. I realized I needed someone who could promise me research/funding and real advising. The [X] group was pretty filled up (and there were some politics), so it was impossible to get more than this. (2) I thought the professors in CMT treated me with more respect then the [X] profs I talked to.” – John Doe, Physics
“I believe that choosing which grad schools to apply to should primarily be about the research, so this question is more for after you’ve (hopefully) been accepted to a couple schools.  If you are going into theoretical physics, and if you don’t have some sort of fellowship from them or an outside agency, ask them how much their theory students [teach].  Do they have to TA every semester for their funding?  Do they at least get summers off?  Or do they only have to TA for the first one or two years?  This shouldn’t be the primary factor in deciding where to go – research always is – but it’s not something that should be ignored completely.  Teaching is usually somewhat rewarding in my experience, but it adds absolutely no benefit to your career if you are focused on a professorship at a research university.  Every hour you spend steaching is an hour someone else is researching and you aren’t.  And 10-20 hours a week of teaching adds up.” – Michael Saelim, Physics, Cornell
Share

During the holidays, many of my colleagues working at CERN and I went home, where we encountered aunts and grandpas, parents and friends, all with the the same questions to be answered: What it is that you do? Is that the black hole thing? OK, right, physics… but what is your actual JOB?

While I was in the US, I went to visit a high school class near Rochester, NY. One of the most important things I thought I could explain to the students there was how researchers at CERN become researchers at CERN. That’s something I didn’t understand at all when I was choosing a career path, and it helps explain a little about what it is that we do everyday.

A disclaimer: People take all kinds of paths to become researchers at CERN, but there is one standard path, and that’s what I’ll describe. There are, of course, many variations on this theme — my own path wasn’t exactly what I’ll describe here. I’ll also talk mostly about the way it works in the US — it is similar in many other countries, but with subtle differences in years, titles, etc.

Here, then, is my guide for families, friends, and particle physics enthusiastics to what it is that many of us do.

Step 1. College, AKA “Undergrad.” This one is pretty well understood. Most physicists working at CERN went through four (or more…) years of college, with a physics degree or some other related science degree. In the four years of classes, students should learn the basic physics and math tools that they’ll need. In addition to taking classes, many people also start to do research with a professor at their university. This professor is someone who does research in addition to teaching. He or she is actively engaged in answering some question that no one has answered before, working in a lab on campus, or working as part of a big collaboration like the ones we have at CERN.

Step 2. Graduate school, AKA “Doctorate” AKA “Ph.D.” After finishing college, most people who want to do research (in any field, not just physics!) apply to graduate school. It’s usually a good idea to go to a different university for graduate school, to experience a new place and meet new people. The first one to two years of grad school in the US feels a lot like undergrad, only more so: classes, projects and papers, exams. Each university has a different set of exams for physics students to pass, before they can focus all their time on research. During the time that students are taking classes, they are also usually teaching classes at the university. They may be supervising labs, grading, or teaching small sections of a bigger lecture class once a week. Physics grad students may also get started doing research right away with a group of people at their university. This means that most science grad students are not paying to go to school like law students or medical students — they are getting their tuition covered, and getting paid, by teaching or by doing research.

After the classes are over, graduate students in physics focus on research. They have one or more advisors, who study a topic that the student also wants to become an expert in. The average physics Ph.D. is about six years, so people may spend 2 years on classes and then four years on research. This is one of the most misunderstood parts of science grad school, I think. After those first few years, grad school is a lot like a regular job. You don’t have any more classes, you do work, you get paid, and your tuition is paid by the research group.

The culmination of a Ph.D. in any area is the thesis. In this document, the student puts together their contribution to their field: their advancement of the knowledge in their research area. They should present a new idea, or answer a question no one has ever answered, or write about a new measurement they’ve done. The thesis is judged by a committee of professors including the student’s advisor, and once it is done, the degree of “Doctorate” is awarded and people joke around with you for a while calling you “Doctor” and asking if there’s a Doctor in the house.

One tip for family and friends of graduate students: The question that no one near the end of the Ph.D. wants to be asked is “When will you be done?” It may seem like polite chit-chat to you, but it may be a wrenching topic for them. There is no set schedule for a Ph.D. to finish. Ph.D.’s are not necessarily awarded in the spring, or in the fall, it doesn’t come everyone after a set number of years like 4, 5, or 6. It’s a decision made by the students and the advisors, when they
all feel like the work they are doing is ready. Asking people when they’ll finish only reminds them that they may not know THEMSELVES when they’ll be finished, and that’s often frustrating.

Step 3. Postdoctoral Research Scientist AKA “Postdoc.” This is the job that I have now. After finishing a Ph.D. in partiçle physics, people who want to continue doing research usually take a job at a university or lab called a “postdoc.” There’s a pretty seamless transition from grad school to being a postdoc, because postdocs also do research — similar to the last 4 or so years fo grad school. In our field, people usually take a job at a different university than the one where they were a Ph.D. student, and they keep the job there for about 4-5 years, with a bit of variation on the term (sometimes 3 years, or as many as 7…). Postdocs are often put in charge of bigger projects, and do more mentoring of grad students. Postdocs also have more choice about which topics to work on.

Step 4. Faculty member or Researcher at a Lab. After being a postdoc, physicists staying in the field apply for research positions at labs, like Brookhaven National Lab where Peter works, or they apply for research or faculty jobs at universities. Both offer opportunities for continuing research, and faculty members teach classes as well. (Sometimes research associates teach, too.) Once you have this position, you still have to deal with getting tenure if you want to stick around. I remember listening to a very interesting NPR interview with a Harvard biology professor whose students couldn’t believe that she still had things to worry about — the job she had as Harvard Professor was her goal, wasn’t it? She explained that she still had a lot to do if she wanted to STAY a Harvard Professor. The whole interview about her career and passion for deadly mushrooms is online.

Hopefully, this will give you some context for the posts here, written by people at the grad student, postdoc, and researcher/faculty levels, and some idea of the paths we’ve taken to get here.

Share