• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • USLHC
  • USLHC
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Flip
  • Tanedo
  • USLHC
  • USA

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • Karen
  • Andeen
  • Karlsruhe Institute of Technology

Latest Posts

  • Seth
  • Zenz
  • USLHC
  • USA

Latest Posts

  • Alexandre
  • Fauré
  • CEA/IRFU
  • FRANCE

Latest Posts

  • Jim
  • Rohlf
  • USLHC
  • USA

Latest Posts

  • Emily
  • Thompson
  • USLHC
  • Switzerland

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘CERN’

Even before my departure to La Thuile in Italy, results from the Rencontres de Moriond conference were already flooding the news feeds. This year’s Electroweak session from 15 to 22 March, started with the first “world measurement” of the top quark mass, from a combination of the measurements published by the Tevatron and LHC experiments so far. The week went on to include a spectacular CMS result on the Higgs width.

Although nearing its 50th anniversary, Moriond has kept its edge. Despite the growing numbers of must-attend HEP conferences, Moriond retains a prime spot in the community. This is in part due to historic reasons: it’s been around since 1966, making a name for itself as the place where theorists and experimentalists come to see and be seen. Let’s take a look at what the LHC experiments had in store for us this year…

New Results­­­

Stealing the show at this year’s Moriond was, of course, the announcement of the best constraint yet of the Higgs width at < 17 MeV with 95% confidence reported in both Moriond sessions by the CMS experiment. Using a new analysis method based on Higgs decays into two Z particles, the new measurement is some 200 times better than previous results. Discussions surrounding the constraint focussed heavily on the new methodology used in the analysis. What assumptions were needed? Could the same technique be applied to Higgs to WW bosons? How would this new width influence theoretical models for New Physics? We’ll be sure to find out at next year’s Moriond…

The announcement of the first global combination of the top quark mass also generated a lot of buzz. Bringing together Tevatron and LHC data, the result is the world’s best value yet at 173.34 ± 0.76 GeV/c2.  Before the dust had settled, at the Moriond QCD session, CMS announced a new preliminary result based on the full data set collected at 7 and 8 TeV. The precision of this result alone rivals the world average, clearly demonstrating that we have yet to see the ultimate attainable precision on the top mass.

ot0172hThis graphic shows the four individual top quark mass measurements published by the ATLAS, CDF, CMS and DZero collaborations, together with the most precise measurement obtained in a joint analysis.

Other news of the top quark included new LHC precision measurements of its spin and polarisation, as well as new ATLAS results of the single top-quark cross section in the t-channel presented by Kate Shaw on Tuesday 25 March. Run II of the LHC is set to further improve our understanding of this

A fundamental and challenging measurement that probes the nature of electroweak symmetry breaking mediated by the Brout–Englert–Higgs mechanism is the scattering of two massive vector bosons against each other. Although rare, in the absence of the Higgs boson, the rate of this process would strongly rise with the collision energy, eventually breaking physical law. Evidence for electroweak vector boson scattering was detected for the first time by ATLAS in events with two leptons of the same charge and two jets exhibiting large difference in rapidity.

With the rise of statistics and increasing understanding of their data, the LHC experiments are attacking rare and difficult multi-body final states involving the Higgs boson. ATLAS presented a prime example of this, with a new result in the search for Higgs production in association with two top quarks, and decaying into a pair of b-quarks. With an expected limit of 2.6 times the Standard Model expectation in this channel alone, and an observed relative signal strength of 1.7 ± 1.4, the expectations are high for the forthcoming high-energy run of the LHC, where the rate of this process is enhanced.

Meanwhile, over in the heavy flavour world, the LHCb experiment presented further analyses of the unique exotic state X(3872). The experiment provided unambiguous confirmation of its quantum numbers JPC to be 1++, as well as evidence for its decay into ψ(2S)γ.

Explorations of the Quark-Gluon Plasma continue in the ALICE experiment, with results from the LHC’s lead-proton (p-Pb) run dominating discussions. In particular, the newly observed “double-ridge” in p-Pb is being studied in depth, with explorations of its jet peak, mass distribution and charge dependence presented.

New explorations

Taking advantage of our new understanding of the Higgs boson, the era of precision Higgs physics is now in full swing at the LHC. As well as improving our knowledge of Higgs properties – for example, measuring its spin and width – precise measurements of the Higgs’ interactions and decays are well underway. Results for searches for Beyond Standard Model (BSM) physics were also presented, as the LHC experiments continue to strongly invest in searches for Supersymmetry.

In the Higgs sector, many researchers hope to detect the supersymmetric cousins of the Higgs and electroweak bosons, so-called neutralinos and charginos, via electroweak processes. ATLAS presented two new papers summarising extensive searches for these particles. The absence of a significant signal was used to set limits excluding charginos and neutralinos up to a mass of 700 GeV – if they decay through intermediate supersymmetric partners of leptons – and up to a mass of 420 GeV – when decaying through Standard Model bosons only.

Furthermore, for the first time, a sensitive search for the most challenging electroweak mode producing pairs of charginos that decay through W bosons was conducted by ATLAS. Such a mode resembles that of Standard Model pair production of Ws, for which the currently measured rates appear a bit higher than expected.

In this context, CMS has presented new results on the search for the electroweak pair production of higgsinos through their decay into a Higgs (at 125 GeV) and a nearly massless gravitino. The final state sports a distinctive signature of 4 b-quark jets compatible with a double Higgs decay kinematics. A slight excess of candidate events means the experiment cannot exclude a higgsino signal. Upper limits on the signal strength at the level of twice the theoretical prediction are set for higgsino masses between 350 and 450 GeV.

In several Supersymmetry scenarios, charginos can be metastable and could potentially be detected as a long-lived particle. CMS has presented an innovative search for generic long-lived charged particles by mapping their detection efficiency in function of the particle kinematics and energy loss in the tracking system. This study not only allows to set stringent limits for a variety of Supersymmetric models predicting chargino proper lifetime (c*tau) greater than 50cm, but also gives a powerful tool to the theory community to independently test new models foreseeing long lived charged particles.

In the quest to be as general as possible in the search for Supersymmetry, CMS has also presented new results where a large subset of the Supersymmetry parameters, such as the gluino and squark masses, are tested for their statistical compatibility with different experimental measurements. The outcome is a probability map in a 19-dimension space. Notable observations in this map are that models predicting gluino masses below 1.2 TeV and sbottom and stop masses below 700 GeV are strongly disfavoured.

… but no New Physics

Despite careful searches, the most heard phrase at Moriond was unquestionably: “No excess observed – consistent with the Standard Model”. Hope now lies with the next run of the LHC at 13 TeV. If you want to find out more about the possibilities of the LHC’s second run, check out the CERN Bulletin article: “Life is good at 13 TeV“.

In addition to the diverse LHC experiment results presented, Tevatron experiments, BICEP, RHIC and other experiments also reported their breaking news at Moriond. Visit the Moriond EW and Moriond QCD conference websites to find out more.

Katarina Anthony-Kittelsen

Share

This is the last part of a series of three on supersymmetry, the theory many believe could go beyond the Standard Model. First I explained what is the Standard Model and show its limitations. Then I introduced supersymmetry and explained how it would fix the main flaws of the Standard Model. I now review how experimental physicists are trying to discover “superparticles” at the Large Hadron Collider (LHC) at CERN.

If Supersymmetry (or SUSY for short) is as good as it looks, why has none of the new SUSY particles been found yet? There could be many reasons, the simplest being that this theory is wrong and supersymmetric particles do not exist. If that were the case, one would still need another way to fix the Standard Model.

SUSY can still be the right solution if supersymmetric particles have eluded us for some reasons: we might have been looking in the wrong place, or in the wrong way or they could still be out of the reach of current accelerators.

So how does one go looking for supersymmetric particles? One good place to start is at CERN with the Large Hadron Collider or LHC. The 27-km long accelerator is the most powerful in the world. It brings protons into collisions at nearly the speed of light, generating huge amounts of energy in the tiniest points in space.  Since energy and matter are two forms of the same essence, like water and ice, the released energy materializes in the form of fundamental particles. The hope is to create some of the SUSY particles.

One major problem is that nobody knows the mass of all these new particles. And without the mass, it is very much like looking for someone in a large city without knowing the person’s address. All one can do then is comb the city trying to spot that person. But imagine the task if you don’t even know what the person looks like, how she behaves or even in which city, let alone which country she lives in.

Supersymmetry is in fact a very loosely defined theory with a huge number of free parameters. These free parameters are quantities like the masses of the supersymmetric particles, or their couplings, i.e. quantities defining how often they will decay into other particles. Supersymmetry does not specify which value all these quantities can take.

Hence, theorists have to make educated guesses to reduce the zone where one should search for SUSY particles. This is how various models of supersymmetry have appeared. Each one is an attempt at circumscribing the search zone based on different assumptions.

One common starting point is to assume that a certain property called R-parity is conserved. This leads to a model called Minimal SUSY but this model still has 105 free parameters. But with this simple assumption, one SUSY particle ends up having the characteristics of dark matter. Here is how it works: R-parity conservation states that all supersymmetric particles must decay into other, lighter supersymmetric particles. Therefore, the lightest supersymmetric particle or LSP cannot decay into anything else. It remains stable and lives forever, just like dark matter particles do. Hence the LSP could be the much sought-after dark matter particle.

SUSY-cascade-Fermilab Credit: Fermilab

How can the Large Hadron Collider help? Around the accelerator, large detectors act like giant cameras, recording how the newly created and highly unstable particles break apart like miniature fireworks. By taking a snapshot of it, one can record the origin, direction and energy of each fragment and reconstruct the initial particle.

Heavy and unstable SUSY particles would decay in cascade, producing various Standard Model particles along the way. The LSP would be the last possible step for any decay chain. Generally, the LSP is one of the mixed SUSY states with no electric charge called neutralino. Hence, each of these events contains a particle that is stable but does not interact with our detectors. In the end, there would be a certain amount of energy imbalance in all these events, indicating that a particle has escaped the detector without leaving any signal.

At the LHC, both the CMS and ATLAS experiments have searched billions of events looking for such events but to no avail. Dozens of different approaches have been tested and new possibilities are constantly being explored. Each one corresponds to a different hypothesis, but nothing has been found so far.

dijet-monjet Two events with jets as seen in the ATLAS detector. (Left) A very common event containing two jets of particles. The event is balanced, all fragments were recorded, no energy is missing. (Right) A simulation of a mono-jet event where a single jet recoils against something unrecorded by the detector. The imbalance in energy could be the signature of a dark matter particle like the lightest supersymmetric particle (LSP), something that carries energy away but does not interact with the detector, i.e. something we would not see.

One reason might be that all supersymmetric particles are too heavy to have been produced by the LHC. A particle can be created only if enough energy is available. You cannot buy something that costs more money than you have in your pocket. To create heavy particles, one needs more energy. It is still possible all SUSY particles exist but were out of the current accelerator reach. This point will be settled in 2015 when the LHC resumes operation at higher energy, going from 8 TeV to at least 13 TeV.

If the SUSY particles are light enough to be created at 13 TeV, the chances of producing them will also be decupled, making them even easier to find. And if we still do not find them, new limits will be reached, which will also greatly help focus on the remaining possible models.

SUSY has not said its last word yet. The chances are good supersymmetric particles will show up when the LHC resumes. And that would be like discovering a whole new continent.

Pauline Gagnon

To be alerted of new postings, follow me on Twitter: @GagnonPauline
 or sign-up on this mailing list to receive and e-mail notification.

Share

Voici le dernier d’une série de trois volets sur la supersymétrie, la théorie qui pourrait aller au-delà du Modèle Standard. J’ai expliqué dans un premier temps ce qu’est le Modèle standard et montré ses limites. Puis dans un deuxième volet, j’ai présenté la supersymétrie et expliqué comment elle pourrait résoudre plusieurs lacunes du Modèle standard. Finalement, je passe ici en revue comment les physicien-ne-s essaient de découvrir des « superparticules » au Grand collisionneur de hadrons (LHC) du CERN.

Si la supersymétrie (ou SUSY pour les intimes) est aussi miraculeuse que prédite, pourquoi aucune nouvelle particule supersymétrique n’a t-elle été trouvée à ce jour ? Il pourrait y avoir beaucoup de raisons, la plus simple étant que cette théorie soit fausse et les particules supersymétriques n’existent tout simplement pas. Si c’était le cas, on devrait alors trouver une alternative pour parer aux lacunes du Modèle standard.

Mais SUSY est toujours une solution plausible et ses particules supersymétriques ont pu nous échapper pour d’autres raisons. Peut-être avons nous regardé au mauvais endroit ou de la mauvaise façon. Ou encore elles pourraient être hors de portée de nos accélérateurs.

Mais au fait où et comment cherche-t-on des particules supersymétriques ? Le Grand collisionneur de hadrons (LHC) CERN est l’endroit idéal. Cet accélérateur de 27 km de longueur est le plus puissant au monde. Il provoque des collisions entre des protons lancés à une vitesse proche de celle de la lumière. Ces collisions produisent des quantités d’énergie énormes concentrés en de minuscules points de l’espace. Puisque l’énergie et la matière sont deux formes d’une même essence, comme l’eau et la glace, l’énergie libérée se matérialise sous forme de particules fondamentales. Il est donc possible de créer certaines de ces particules supersymétriques au LHC.

Malheureusement, personne ne connaît la masse de toutes ces nouvelles particules. Et sans la masse, c’est un peu comme chercher quelqu’un dans une grande ville sans connaître son adresse. Il faudrait alors ratisser la ville pour découvrir cette personne. Mais imaginez la tâche si vous ne savez même pas à quoi la personne ressemble, comment elle se comporte, ni même la ville ou le pays elle habite.

La supersymétrie est en fait une théorie comportant de nombreux paramètres libres. Ces paramètres représentent des quantités comme les masses des particules supersymétriques ou leurs couplages, c’est-à-dire la probabilité qu’elles se désintègrent en d’autres particules. La supersymétrie ne spécifie pas quelles valeurs ces quantités peuvent prendre.

Les théoricien-ne-s doivent donc faire des suppositions pour réduire la zone de recherches. C’est ainsi que divers modèles de supersymétrie sont apparus. Chaque modèle représente une tentative pour circonscrire la zone de recherche basée sur des suppositions différentes.

Une hypothèse populaire consiste à supposer qu’une certaine propriété appelée la parité R est conservée. C’est le cas pour le modèle minimal de SUSY mais il conserve tout de même 105 paramètres libres. Mais de cette simple supposition surgit une particule de SUSY ayant les caractéristiques de la matière sombre.

Voici comment ça marche : la conservation de R-parité stipule que toutes les particules supersymétriques doivent se désintégrer en d’autres particules supersymétriques. Par conséquent, la particule supersymétrique la plus légère, le LSP (de l’acronyme anglais Lightest Supersymmetric Particle) ne peut se désintégrer en rien d’autre et reste stable. Elle existe pour toujours, comme les particules de matière sombre. Le LSP pourrait donc être la particule de matière sombre tant recherchée.

Comment le Grand collisionneur de hadrons peut-il aider? Autour de l’accélérateur, de grands détecteurs agissent comme des appareils photo géants, enregistrant comment les particules nouvellement créées et fortement instables se brisent, créant de mini feux d’artifice. Ces clichés permettent d’enregistrer l’origine, la direction et l’énergie de chaque fragment et ainsi reconstruire la particule initiale.SUSY-decay-fr

Des particules de SUSY lourdes et instables se désintégreraient en cascade, produisant diverses particules du Modèle standard en chemin. Le LSP serait la dernière étape possible pour n’importe quelle chaîne de désintégration. Généralement, le LSP est un des états de SUSY mélangés sans charge électrique appelée neutralino. Au final, chaque événement supersymétrique contiendrait une particule stable, qui n’interagirait pas avec nos détecteurs. On observerait donc un déséquilibre dans la quantité d’énergie de tous ces événements, indiquant qu’une particule s’est échappée du détecteur sans laisser de signaux dans les diverses couches du détecteur.

Au LHC, les physicien-ne-s des expériences CMS et ATLAS ont trié des milliards d’événements à la recherche de tels événements, mais en vain. Des douzaines d’approches différentes ont été testées et de nouvelles possibilités sont constamment explorées. Chacune correspond à une hypothèse différente, mais rien n’a encore été trouvé.

dijet-monjet
Deux événements contenant des gerbes de particules captés par le détecteur ATLAS. (A gauche) un événement très courant contenant deux gerbes de particules. L’événement est équilibré en énergie, tous les fragments ont été enregistrés, aucune énergie ne manque. (A droite) une simulation d’un événement contenant une seule gerbe reculant contre quelque chose qui échappe au détecteur. Le déséquilibre dans l’énergie serait la signature d’une particule de matière sombre comme la particule supersymétrique la plus légère (LSP), une particule qui emporterait une certaine quantité d’énergie, mais n’interagirait pas avec le détecteur et que l’on ne verrait donc pas.

Il se peut aussi que toutes les particules supersymétriques soient trop lourdes pour avoir été produites par le LHC. Une particule peut être créée seulement si suffisamment d’énergie est disponible. On ne peut pas acheter quelque chose qui coûte plus que ce que l’on a dans sa poche. Pour créer des particules lourdes, il faut plus d’énergie. Il est donc toujours possible que toutes les particules de SUSY existent, mais qu’elles soient hors de la portée actuelle de l’accélérateur du LHC. Mais on en saura plus en 2015 quand le LHC reprendra du service à plus haute énergie, passant de 8 TeV à au moins 13 TeV.

Si les particules de SUSY sont assez légères pour être créé à 13 TeV, leurs chances de production seront aussi décuplées, les rendant encore plus facile à trouver. Et si nous ne les trouvons toujours pas, de nouvelles limites seront atteintes, ce qui permettra de se concentrer sur les modèles possibles restants.

SUSY n’a pas encore dit son dernier mot. Il reste de bonnes chances pour que des particules supersymétriques apparaissent quand le LHC redémarrera. Et si c’était le cas, ce serait aussi extraordinaire que la découverte d’un tout nouveau continent.

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

Share

This article appeared in symmetry on March 19, 2014.

An international team of scientists from Fermilab’s Tevatron and CERN’s Large Hadron Collider has produced the world’s best value for the mass of the top quark.

An international team of scientists from Fermilab’s Tevatron and CERN’s Large Hadron Collider has produced the world’s best value for the mass of the top quark.

Scientists working on the world’s leading particle collider experiments have joined forces, combined their data and produced the first joint result from Fermilab’s Tevatron and CERN’s Large Hadron Collider. These machines are the past and current holders of the record for most powerful particle collider on Earth.

Scientists from the four experiments involved—ATLAS, CDF, CMS and DZero—announced their joint findings on the mass of the top quark today at the Rencontres de Moriond international physics conference in Italy.

Together the four experiments pooled their data analysis power to arrive at a new world’s best value for the mass of the top quark of 173.34 ± 0.76 GeV/c2.

Experiments at the LHC at the CERN laboratory in Geneva, Switzerland and the Tevatron collider at Fermilab in Illinois, USA are the only ones that have ever seen top quarks—the heaviest elementary particles ever observed. The top quark’s huge mass (more than 100 times that of the proton) makes it one of the most important tools in the physicists’ quest to understand the nature of the universe.

The new precise value of the top-quark mass will allow scientists to test further the mathematical framework that describes the quantum connections between the top quark, the Higgs particle and the carrier of the electroweak force, the W boson. Theorists will explore how the new, more precise value will change predictions regarding the stability of the Higgs field and its effects on the evolution of the universe. It will also allow scientists to look for inconsistencies in the Standard Model of particle physics—searching for hints of new physics that will lead to a better understanding of the nature of the universe.

“The combining together of data from CERN and Fermilab to make a precision top quark mass result is a strong indication of its importance to understanding nature,” says Fermilab director Nigel Lockyer. “It’s a great example of the international collaboration in our field.”

Courtesy of: Fermilab and CERN

Courtesy of: Fermilab and CERN

A total of more than six thousand scientists from more than 50 countries participate in the four experimental collaborations. The CDF and DZero experiments discovered the top quark in 1995, and the Tevatron produced about 300,000 top quark events during its 25-year lifetime, completed in 2011. Since it started collider physics operations in 2009, the LHC has produced close to 18 million events with top quarks, making it the world’s leading top quark factory.

“Collaborative competition is the name of the game,” says CERN’s Director General Rolf Heuer. “Competition between experimental collaborations and labs spurs us on, but collaboration such as this underpins the global particle physics endeavor and is essential in advancing our knowledge of the universe we live in.”

Each of the four collaborations previously released their individual top-quark mass measurements. Combining them together required close collaboration between the four experiments, understanding in detail each other’s techniques and uncertainties. Each experiment measured the top-quark mass using several different methods by analyzing different top quark decay channels, using sophisticated analysis techniques developed and improved over more than 20 years of top quark research beginning at the Tevatron and continuing at the LHC. The joint measurement has been submitted to the arXiv.

A version of this article was originally issued by Fermilab and CERN as a press release.

Share

Voici la deuxième partie d’une série de trois sur la supersymétrie, la théorie qui pourrait aller au-delà du Modèle standard. J’ai expliqué dans un premier temps ce qu’est le Modèle standard et montré ses limites. Je présenterai ici la supersymétrie et expliquerai comment elle pourrait résoudre plusieurs lacunes du Modèle standard. Finalement, je passerai en revue comment les physicien-ne-s essaient de découvrir des « superparticules » au Grand collisionneur de hadrons (LHC) du CERN.

Les théoricien-ne-s doivent souvent attendre pendant des décennies pour voir leurs idées confirmées par des découvertes expérimentales. Ce fut le cas pour François Englert, Robert Brout et Peter Higgs  dont la théorie, élaborée en 1964, ne fut confirmée qu’en 2012 avec la découverte du boson de Higgs  par les expériences du Grand collisionneur de hadrons (LHC).

Aujourd’hui, beaucoup de théoricien-ne-s ayant participé à l’élaboration de ce que l’on connaît maintenant comme la supersymétrie, attendent de voir ce que le LHC révélera.

La supersymétrie est une théorie qui est d’abord apparue comme une symétrie mathématique dans la théorie des cordes au début des années 1970. Au fil du temps, plusieurs personnes y ont apporté de nouveaux éléments, pour finalement aboutir aujourd’hui avec la théorie la plus prometteuse pour aller au-delà du Modèle standard. Parmi les pionniers, il faut d’abord citer deux théoriciens russes, D. V. Volkov et V. P Akulov. Puis en 1973, Julius Wess et Bruno Zumino ont écrit le premier modèle supersymétrique à quatre dimensions, pavant la voie aux développements futurs. L’année suivante, Pierre Fayet a généralisé le mécanisme de Brout-Englert-Higgs  à la supersymétrie et a introduit pour la première fois des superpartenaires pour les particules du Modèle standard.

Tout ce travail ne serait resté qu’un pur exercice mathématique si on n’avait remarqué que la supersymétrie pouvait résoudre certains problèmes fondamentaux du Modèle standard.

Comme nous avons vu, le Modèle standard contient deux types de particules fondamentales : les grains de matière, les fermions avec des valeurs de spin de ½, et les porteurs de force, les bosons avec des valeurs entières de spin.

Le simple fait que les bosons et les fermions n’aient pas les mêmes valeurs de spin les fait se comporter différemment. Chaque groupe obéit à des lois statistiques différentes. Par exemple, deux fermions identiques ne peuvent pas exister dans le même état quantique. Un de leurs nombres quantiques doit être différent. Ces nombres quantiques caractérisent diverses propriétés : leur position, leur charge, leur spin ou leur charge “de couleur” pour les quarks. Puisque tout le reste est identique, deux électrons sur une même orbite atomique doivent avoir deux orientations différentes de spin, une pointant vers le haut, l’autre vers le bas. Cela implique qu’au plus deux électrons peuvent cohabiter sur une même orbite atomique puisqu’il n’y a que deux orientations possibles pour leur spin. Les atomes ont donc plusieurs orbites atomiques pour accommoder tous leurs électrons.

Au contraire, il n’y a aucune restriction imposée au nombre de bosons autorisés à exister dans le même état. Cette propriété explique le phénomène de supraconductivité. Une paire d’électrons forme un boson puisque deux spins de une demie donnent un spin de 0 ou 1 suivant s’ils sont alignés ou non. Dans un supraconducteur, toutes les paires d’électrons peuvent être identiques, chaque paire possédant exactement les mêmes nombres quantiques, ceci étant permis pour les bosons. On peut donc échanger deux paires librement, comme pour du sable mouvant. Tous ses grains de sable sont de taille identique et peuvent changer de position librement, d’où son instabilité. De même, dans un supraconducteur, toutes les paires d’électrons peuvent changer de position, sans aucune friction et donc sans aucune résistance électrique.

La supersymétrie se fonde sur le Modèle standard et associe un « superpartenaire » à chaque particule fondamentale. Les fermions obtiennent des bosons comme superpartenaires et les bosons sont associés à des fermions. Ceci unifie les composantes fondamentales de la matière avec les porteurs de force. Tout devient plus harmonieux et plus symétrique.

SUSY-diagram-Particle-Fever

La supersymétrie se fonde sur le Modèle standard et vient avec plusieurs nouvelles particules supersymétriques, représentées ici avec un tilde (~) au-dessus de leur symbole. (Diagramme tiré du film « Particle Fever » et reproduit avec la permission de Mark Levinson).

Mais il y a d’autres conséquences importantes. Le nombre de particules fondamentales double. La supersymétrie associe un superpartenaire à chaque particule du Modèle standard. De plus, plusieurs de ces partenaires peuvent se mélanger, donnant des états combinés comme les charginos et les neutralinos.

Les implications sont nombreuses. Première conséquence majeure : les deux superpartenaires du quark top, appelés stops, peuvent neutraliser la grande correction du quark top à la masse du boson de Higgs. Deuxième implication: la particule supersymétrique la plus légère (en général un des états mélangés sans charge électrique appelée neutralino) a justement les propriétés que la matière sombre devrait avoir.

Non seulement la supersymétrie réparerait plusieurs gros défauts du Modèle standard, mais elle résoudrait aussi le problème de la matière sombre. On ferait d’une pierre deux coups. Seul minuscule petit problème : si ces particules supersymétriques existent, pourquoi ne les a t’on pas encore trouvées? J’aborderai cette question dans la troisième et dernière partie de cette série.

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution.

Share

Supersymmetry: a tantalising theory

Wednesday, March 19th, 2014

This is the second part of a series of three on supersymmetry, the theory many believe could go beyond the Standard Model. First I explained what is the Standard Model and showed its limitations. I now introduce supersymmetry and explain how it would fix the main flaws of the Standard Model. Finally, I will review how experimental physicists are trying to discover “superparticles” at the Large Hadron Collider (LHC) at CERN.

Theorists often have to wait for decades to see their ideas confirmed by experimental findings. This was the case for François Englert, Robert Brout and Peter Higgs whose theory, elaborated in 1964, only got confirmed in 2012 with the discovery of the Higgs boson by the LHC experiments.

Today, many theorists who participated in the elaboration of what is now known as supersymmetry, are waiting to see what the LHC will reveal.

Supersymmetry is a theory that first appeared as a mathematical symmetry in string theory in early 1970s. Over time, several people contributed new elements that eventually led to a theory that is now one of the most promising successors to the Standard Model. Among the pioneers, the names of two Russian theorists, D. V. Volkov and V. P Akulov, stand out. In 1973, Julius Wess and Bruno Zumino wrote the first supersymmetric model in four dimensions, paving the way to future developments. The following year, Pierre Fayet generalized the Brout-Englert-Higgs mechanism to supersymmetry and introduced superpartners of Standard Model particles for the first time.

All this work would have remained a pure mathematical exercise unless people had noticed that supersymmetry could help fix some of the flaws of the Standard Model.

As we saw, the Standard Model has two types of fundamental particles: the grains of matter, the fermions with spin ½, and the force carriers, the bosons with integer values of spin.

The mere fact that bosons and fermions have different values of spin makes them behave differently. Each class follows different statistical laws. For example, two identical fermions cannot exist in the same quantum state, that is, something -one of their quantum numbers – must be different. Quantum numbers refer to various properties: their position, their charge, their spin or their “colour” charge for quarks. Since everything else is identical, two electrons orbiting on the same atomic shell must have different direction for their spin. One must point up, the other down. This means at most two electrons can cohabit on an atomic shell since there are only two possible orientations for their spins. Hence, atoms have several atomic shells to accommodate all their electrons.

On the contrary, there are no limitations on the number of bosons allowed in the same state. This property is behind the phenomenon called superconductivity. A pair of electrons forms a boson since adding two half spins gives a combined state with a spin of 0 or 1, depending if they are aligned or not. In a superconductor, all pairs of electrons can be identical, with exactly the same quantum numbers since this is allowed for combined spin values of 0 or 1. Hence, one can interchange two pairs freely, just like two grains of sand of identical size can swap position in quick sand, which makes it so unstable. Likewise, in a superconductor, all pairs of electrons can swap position with others, leaving no friction. An electric current can then flow without encountering any resistance.

Supersymmetry builds on the Standard Model and associates a “superpartner” to each fundamental particle. Fermions get bosons as superpartners, and bosons get associated with fermions. This unifies the building blocks of matter with the force carriers. Everything becomes more harmonious and symmetric.

SUSY-diagram-Particle-Fever

Supersymmetry builds on the Standard Model and comes with many new supersymmetric particles, represented here with a tilde (~) on them. (Diagram taken from the movie “Particle fever” reproduced with permission from Mark Levinson)

But there are other important consequences. The number of existing fundamental particles doubles. Supersymmetry gives a superpartner to each Standard Model particle. In addition, many of these partners can mix, giving combined states such as charginos and neutralinos

This fact has many implications. First major consequence: the two superpartners to the top quark, called the stops, can cancel out the large contribution from the top quark to the mass of the Higgs boson. Second implication: the lightest supersymmetric particle (in general one of the mixed states with no electric charge called neutralino) has just the properties one thinks dark matter should have.

Not only supersymmetry would fix the flaws of the Standard Model, but it would also solve the dark matter problem. Killing two huge birds with one simple stone. There is just one tiny problem: if these supersymmetric particles exist, why have we not found any yet? I will address this question in the next part in this series.

Pauline Gagnon

To be alerted of new postings, follow me on Twitter: @GagnonPauline
 or sign-up on this mailing list to receive and e-mail notification.

Share

Voici la première partie d’une série de trois sur la supersymétrie, la théorie qui pourrait aller au-delà du Modèle standard. J’explique ici ce qu’est le Modèle standard et montre ses limites. Puis dans un deuxième volet, je présenterai la supersymétrie et expliquerai comment elle pourrait résoudre plusieurs gros défauts du Modèle Standard. Finalement, je passerai en revue comment les physicien-ne-s essaient de découvrir des « superparticules » au Grand collisionneur de hadrons (LHC) du CERN.

Le Modèle Standard décrit les composantes fondamentales de la matière et les forces qui assurent leur cohésion . Ce modèle repose sur deux idées toutes simples : toute la matière est faite de particules et ces particules interagissent entre elles en échangeant d’autres particules associées aux forces fondamentales.

Les grains de matière de base sont des fermions et les porteurs de force sont des bosons. Les noms de ces deux classes réfèrent à leur spin – une mesure de leur quantité de mouvement angulaire. Les fermions ont des valeurs de spin de un demi tandis que les bosons ont des valeurs entières tel qu’indiqué dans le diagramme ci-dessous.

ModèleStandardLes grains de matière, les fermions, se divisent en deux familles. La famille des leptons compte six membres, l’électron étant le plus connu. La famille des quarks contient six quarks. Les protons et les neutrons sont formés à partir de quarks up et down. Ces douze fermions sont les seules composantes de matière et chacun a une valeur de spin de ½.

Ces particules interagissent entre elles par l’intermédiaire de forces fondamentales. Chaque force vient avec un ou plusieurs porteurs de force. La force nucléaire vient avec le gluon et lie les quarks dans le proton et les neutrons. Le photon est associé à la force électromagnétique. L’interaction faible est responsable de la radioactivité. Elle vient avec les bosons Z et W. Tous ont un spin de 1.

Le point à retenir c’est qu’il existe des grains de matière, les fermions avec un spin de ½, et des porteurs de force, les bosons, avec une valeur entière de spin.

Le Modèle Standard est à la fois remarquablement simple et très puissant. Il vient bien sûr avec des équations complexes qui expriment tout cela d’une façon mathématique. Ces équations permettent aux théoricien-ne-s de faire des prédictions ultra précises. Presque chaque quantité qui a été mesurée dans les laboratoires de physique des particules  au cours des cinq dernières décennies tombe pile poil sur la valeur prévue si on tient compte des marges d’erreur expérimentales.

Alors, qu’est-ce qui cloche avec le Modèle Standard ? Essentiellement, on pourrait dire que le modèle entier manque de robustesse à plus haute énergie. Tant que nous observons divers phénomènes à basse énergie comme nous l’avons fait jusqu’à présent, tout se comporte correctement. Mais comme les accélérateurs deviennent de plus en plus puissants, nous sommes sur le point d’atteindre un niveau d’énergie qui n’avait jusqu’alors existé seulement que peu de temps après le Big Bang. Et à cette énergie, les équations du Modèle Standard commencent à chanceler.

C’est un peu comme avec les lois de la mécanique. Le mouvement d’une particule se déplaçant à une vitesse proche de celle de la lumière ne peut pas être décrite avec les lois simples de la mécanique de Newton. Il faut faire appel aux équations de la relativité.

Autre problème majeur du Modèle Standard : il n’inclut pas la gravité, une des quatre forces fondamentales. Le modèle échoue aussi à expliquer pourquoi la gravité est tellement plus faible que les forces électromagnétiques ou nucléaires. Par exemple, un simple petit aimant suffit pour contrecarrer l’attraction gravitationnelle de la Terre entière et peut maintenir un petit objet à votre frigo.

Cette différence énorme entre les forces fondamentales n’est qu’un aspect du « problème de hiérarchie ». Ce terme réfère aussi à la vaste étendue des valeurs de masse des particules élémentaires. Dans le tableau ci-dessus, les masses sont exprimées en unité d’électron-volt (eV), millions d’eV (MeV) et même milliard d’eV (GeV). L’électron est donc 3500 fois plus léger que le tau. Même chose pour les quarks : le quark top est 75000 fois plus lourd que les quarks up et down. Pourquoi existe-t-il une si grande variété de masses parmi les composantes de la matière? Imaginez si un jeu de blocs Lego contenait des briques de tailles aussi disparates!

Le problème de hiérarchie est aussi lié à la masse du boson de Higgs. Les équations du Modèle Standard établissent des relations entre les particules fondamentales. Par exemple, dans les équations, le boson de Higgs a une masse de base à laquelle les théoricien-ne-s doivent ajouter des corrections pour chaque particule interagissant avec le boson de Higgs. Plus la particule est lourde, plus cette correction est grande. Le quark top étant le plus lourd, il apporte une correction si grande à la masse théorique du boson de Higgs qu’il est difficile de comprendre comment la masse mesurée du boson de Higgs puisse être aussi petite.

Tout cela suggère l’existence de nouvelles particules. Par exemple, les corrections à la masse du Higgs venant du quark top pourraient être neutralisées par d’autres particules hypothétiques et expliquer pourquoi la masse du boson de Higgs est si petite. Justement, la supersymétrie prévoit l’existence de telles particules, d’où son attrait.

Finalement, le Modèle Standard ne décrit que la matière ordinaire, soit toute la matière que nous voyons sur Terre et dans les galaxies. Mais les preuves abondent indiquant que l’Univers contient cinq fois plus de « matière sombre », un type de matière complètement différente de celle que nous connaissons. La matière sombre n’émet pas de lumière, mais se manifeste par ses effets de gravitation. Parmi toutes les particules contenues dans le Modèle Standard, aucune n’a les propriétés de la matière sombre. Il est donc clair que le Modèle Standard ne donne qu’une image incomplète du contenu de l’Univers. Mais de la supersymétrie pourrait résoudre ce problème.

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

Share

CERN will be celebrating its 60th anniversary this year. That means 60 years of pioneering scientific research and exciting discoveries. Two Italian physicists, Maria and Giuseppe Fidecaro, remember nearly all of it since they arrived in 1956. Most impressively, they are still hard at work, every day!

The couple is easy to spot, even in the cafeteria during busy lunchtimes, where they usually engage in the liveliest discussions. “We argue quite a lot,” Maria tells me with a big smile. “We have very different styles.” “But in general, in the end, we agree,” completes Giuseppe.

Fidecaro-3-smallPhoto credit: Anna Pantelia, CERN

In October 1954, Giuseppe went to the University of Liverpool as a CERN Fellow to do research with their brand new synchrocyclotron. Maria also joined, having obtained a fellowship from the International Federation of University Women. After getting married in July 1955, they carried out experiments on pions, Giuseppe with a lead glass Cerenkov counter, Maria with a diffusion chamber.

In summer 1956, both moved to Geneva, and Maria got a CERN fellowship. “There were only about 300, maybe 400 people at CERN then”, explains Maria. A beautiful mansion called “Villa de Cointrin” housed the administrative offices on the airport premises, while physicists had their offices in nearby barracks.

Giuseppe was assigned to the Synchrocyclotron Division.  This was the first accelerator built at CERN and was operated from 1957 until 1990. Giuseppe set up a group and prepared the basic equipment for experiments  that was used in 1958 for a successful search for pions decaying into an electron and a neutrino. This was a hot topic at the time and was the first experiment involving a CERN accelerator. “The news went all over the world overnight”, recalls Giuseppe. Recently refurbished, the synchrocyclotron will soon become a permanent exhibit at CERN.

Meanwhile, Maria worked on a novel method to provide polarised proton beams.  As she recalls: “It was just a mere 10 years after the end of the war. The war feelings were still very much there”. “But it was really easy to work with each other,” Giuseppe adds, “everybody got along; we all had a common goal.”

Although there were very few women when she started, Maria feels she was respected by her peers. “In my group, I was simply one of them”, she comments.

Today, long after most have retired, they have both chosen to remain active and are still doing research but of another style.  Giuseppe delves in the history of physics while Maria is happy to revisit some of her past work, making sure she did not overlook any important detail. “In the heat of the moment, with the beams on and everything, there was no time to have a broad view”, she explains. “It’s a pleasure to go back and gain a deeper insight, and put our work in perspective with respect to what was going on at CERN and elsewhere”.

Both agree: every moment was good. “Having gone through all of it for 60 years is what has been best”, Maria says. “It was great to be able to pioneer so many different experiments”, adds Giuseppe, “and to share work with so many interesting people”.   Maria confirms “Life has been kind to us”.

Pauline Gagnon

To be alerted of new postings, follow me on Twitter: @GagnonPauline
 or sign-up on this mailing list to receive an e-mail notification.

 

Share

Le CERN célébrera cette année son 60e anniversaire. Cela signifie 60 ans de recherche scientifique et de découvertes passionnantes. Une physicienne et un physicien italiens se souviennent de presque tout. En effet, Maria et Giuseppe Fidecaro ont commencé à travailler au CERN en 1956. Fait encore plus surprenant, on les y retrouve encore tous les jours !

Le couple est facile à repérer, même lorsque la cafétéria est bondée le midi : ils sont toujours lancés dans des discussions animées. « Nous nous disputons beaucoup, me confie Maria avec un grand sourire. Nous avons des styles très différents. » « Mais en général, à la fin, nous nous mettons d’accord », précise Giuseppe.

Fidecaro-3-smallPhoto: Anna Pantelia, CERN

En octobre 1954, Giuseppe part pour l’Université de Liverpool, pour travailler avec leur tout nouveau synchrocyclotron. Maria en fait de même, ayant obtenu une bourse de la Fédération internationale des femmes universitaires. Après leur mariage, en juillet 1955, ils travaillent sur les pions : Giuseppe, avec un détecteur Cherenkov de verre et de plomb, et Maria, avec une chambre à diffusion. À l’été 1956, les deux chercheurs s’installent à Genève, où Maria a obtenu une bourse du CERN. « Il y avait alors seulement 300, peut-être 400 personnes au CERN », se souvient-elle. Près de l’aéroport, un bel hôtel particulier, appelé « La Villa de Cointrin », abritait les bureaux administratifs, tandis que les physicien(ne)s avaient leurs bureaux dans des baraques voisines.

Au CERN, Giuseppe est assigné à la division Synchrocyclotron. C’était le premier accélérateur du Laboratoire et il fut exploité de 1957 à 1990. Giuseppe y monta un groupe et prépara l’équipement expérimental de base. Le synchrocyclotron fut utilisé en 1958 pour une recherche fructueuse sur les désintégrations de pions en électrons et neutrinos. Ce mode de désintégration n’avait jamais été observé, ce qui soulevait bien des questions à l’époque. C’était la première expérience impliquant un accélérateur au CERN. « La nouvelle a fait le tour du monde ! », se réjouit encore Giuseppe. Le synchrocyclotron a depuis été réhabilité et deviendra bientôt une exposition permanente.

Maria, quand à elle, travaille à l’époque sur une nouvelle méthode visant à fournir des faisceaux de protons polarisés. « C’était à peine dix ans après la fin de la guerre, se souvient-elle. Les souvenirs des conflits étaient encore présents. » « Mais il était vraiment facile de travailler les uns avec les autres. Tout le monde s’entendait bien. Nous avions un but commun », ajoute Giuseppe. Bien que les femmes étaient très peu nombreuses quand elle a commencé, Maria se sentait respectée par ses collègues. « Dans mon groupe, j’étais simplement une scientifique parmi d’autres », fait-elle remarquer.

Alors que la plupart de leurs collègues sont depuis longtemps partis à la retraite, les deux chercheurs ont choisi de rester actifs et font toujours de la recherche, mais dans un style différent. Giuseppe s’intéresse à l’histoire de la physique, tandis que Maria est heureuse de revisiter une partie de son travail passé, s’assurant de ne pas avoir oublié de détails importants. « Dans le feu de l’action, avec les faisceaux et tout le reste, on n’avait pas le temps de prendre de recul sur nos recherches, explique-t-elle. C’est un plaisir aujourd’hui de revenir en arrière, d’avoir une vue plus approfondie et de remettre notre travail dans le contexte de l’époque, du CERN et d’ailleurs. »

Tous les deux sont d’accord : chaque moment était bien. « Le meilleur, c’est d’avoir pu prendre part à tout cela pendant 60 ans », confie Maria. Giuseppe ajoute : « C’était super de pouvoir participer en tant que pionniers à autant d’expériences différentes et d’avoir pu partager le travail de tant de personnes intéressantes ». Et Maria de conclure : « La vie a été gentille avec nous. »

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

 

Share

Getting to the Bottom of the Higgs

Thursday, January 30th, 2014

Updated Friday, January 31, 2014: Candidate event of Higgs boson decaying to bottom quarks has been added at the bottom.

CMS has announced direct evidence of the Higgs coupling to bottom quarks. This is special.

Last week, the Compact Muon Solenoid Experiment, one of the two general purpose experiments at the CERN Large Hadron Collider (LHC), submitted two papers to the arXiv. The first claims the first evidence for the Higgs boson decaying directly to tau lepton pairs and the second summarizes the evidence for the Higgs boson decaying directly to bottom quarks and tau leptons. (As an aside: The summary paper is targeted for Nature Physics, so it is shorter and more broadly accessible than other ATLAS and CMS publications.) These results are special, and why they are important is the topic of today’s post. For more information about the evidence was obtained, CERN posted a nice QD post last month.

Event display of a candidate Higgs boson decaying into a tau lepton and anti-tau lepton in the CMS detector.

Fig 1. Event display of a candidate Higgs boson decaying into a tau lepton and anti-tau lepton in the ATLAS detector.

There is a litany of results from ATLAS and CMS regarding the measured properties of the Higgs boson. However, these previous observations rely on the Higgs decaying to photons, Z bosons, or W bosons, as well as the Higgs being produced from annihilating gluons or being radiated off a W or Z. Though the top quark does contribute to the Higgs-photon and Higgs-gluon interactions, none of these previous measurements directly probe how fermions (i.e., quarks and leptons) interact with the Higgs boson. Until now, suggestions that the Higgs boson couples to fermions (i) proportionally to their masses and (ii) that the couplings possess no other scaling factor were untested hypotheses. In fact, this second hypothesis remains untested.

CMS-Htautau1

Fig. 2: Event display of a candidate Higgs boson decaying into a tau lepton and anti-tau lepton in the CMS detector.

As it stands, CMS claims “strong evidence for the direct coupling of the 125 GeV Higgs boson” to bottom quarks and tau leptons. ATLAS has comparable evidence but only for tau leptons. The CMS experiment’s statistical significance of the signal versus the “no Higgs-to-fermion couplings” hypothesis is 3.8 standard deviations, so no rigorous discovery yet (5 standard deviations is required). For ATLAS, it is 4.1 standard deviations. The collaborations still need to collect more data to satisfactorily validate such an incredible claim. However, this should not detract from that fact that we are witnessing phenomena never before seen in nature. This is new physics as far as I am concerned, and both ATLAS and CMS should be congratulated on discovering it.

Event display of a candidate Higgs boson decaying into a tau lepton and anti-tau lepton in the CMS detector.

Fig. 3: Event display of a candidate Higgs boson decaying into a bottom quark and anti-bottom quark in the ATLAS detector. HT to Jon Butterworth for the link.

The Next Step

Once enough data has been collected to firmly and undoubtedly demonstrate that quarks and leptons directly interact with the Higgs, the real tests of the Standard Model of particle physics start up. In the Standard Model, the strength at which a fermion interacts with the Higgs is proportional to the fermion mass and inversely proportional to the ground state energy of the Higgs field. There is no other factor involved. This is definitively not the case for a plethora of new physics models, including scenarios with multiple Higgs bosons, like supersymmetry, as well as scenarios with new, heavy fermions (heavy bottom quark and tau lepton partners). This is definitely a case of using newly discovered physics to find more new physics.

Happy Colliding.

- Richard (@bravelittlemuon)

PS I was unable to find an event display of a Higgs boson candidate decaying into a pair of bottom quarks. If anyone knows where I can find one, I would be very grateful.

PSS Much gratitude toward Jon Butterworth for providing a link to Higgs-bbar candidate events.

Share