• John
  • Felde
  • University of Maryland
  • USA

Latest Posts

  • James
  • Doherty
  • Open University
  • United Kingdom

Latest Posts

  • Andrea
  • Signori
  • Nikhef
  • Netherlands

Latest Posts

  • CERN
  • Geneva
  • Switzerland

Latest Posts

  • Aidan
  • Randle-Conde
  • Université Libre de Bruxelles
  • Belgium

Latest Posts

  • TRIUMF
  • Vancouver, BC
  • Canada

Latest Posts

  • Laura
  • Gladstone
  • MIT
  • USA

Latest Posts

  • Steven
  • Goldfarb
  • University of Michigan

Latest Posts

  • Fermilab
  • Batavia, IL
  • USA

Latest Posts

  • Seth
  • Zenz
  • Imperial College London
  • UK

Latest Posts

  • Nhan
  • Tran
  • Fermilab
  • USA

Latest Posts

  • Alex
  • Millar
  • University of Melbourne
  • Australia

Latest Posts

  • Ken
  • Bloom
  • USLHC
  • USA

Latest Posts

Posts Tagged ‘boson de Higgs’

Les collaborations ATLAS et CMS du CERN ont maintenant l’évidence que la nouvelle particule découverte en juillet 2012 se comporte de plus en plus comme le boson de Higgs. Les deux expériences viennent en fait de démontrer que le boson de Higgs se désintègre aussi en particules tau, des particules semblables aux électrons mais beaucoup plus lourdes.

Pourquoi est-ce si important? CMS et l’ATLAS avaient déjà établi que ce nouveau boson était bien un type de boson de Higgs. Si tel est le cas, la théorie prévoit qu’il doit se désintégrer en plusieurs types de particules. Jusqu’ici, seules les désintégrations en bosons W et Z de même qu’en photons étaient confirmées. Pour la première fois, les deux expériences ont maintenant la preuve qu’il se désintègre aussi en particules tau.

La désintégration d’une particule s’apparente beaucoup à faire de la monnaie pour une pièce. Si le boson de Higgs était une pièce d’un euro, il pourrait se briser en différentes pièces de monnaie plus petites. Jusqu’à présent, le distributeur de monnaie semblait seulement donner la monnaie en quelques façons particulières. On a maintenant démontré qu‘il existe une façon supplémentaire.

Il y a deux classes de particules fondamentales, appelées fermions et bosons selon la valeur de quantité de mouvement angulaire. Les particules de matière comme les taus, les électrons et les quarks appartiennent tous à la famille des fermions. Par contre, les particules associées aux diverses forces qui agissent sur ces fermions sont des bosons, comme les photons et les bosons W et Z.

L”été dernier, l’expérience CMS avait déjà apporté la preuve avec un signal de 3.4 sigma que le boson de Higgs se désintégrait en fermions en combinant leurs résultats pour deux types de fermions, les taus et les quarks b. Un sigma correspond à un écart-type, la taille des fluctuations statistiques potentielles. Trois sigma sont nécessaires pour revendiquer une évidence tandis que cinq sigma sont nécessaires pour clamer une découverte.

Pour la première fois, il y a maintenant évidence pour un nouveau canal de désintégration (les taus) – et deux expériences l’ont produit indépendamment. La collaboration ATLAS a montré la preuve pour le canal des taus avec un signal de 4.1 sigma, tandis que CMS a obtenu 3.4 sigma, deux résultats forts prouvant que ce type de désintégrations se produit effectivement.

En combinant leurs résultats les plus récents pour les taus et les quarks b, CMS a maintenant une évidence pour des désintégrations en fermions avec 4.0 sigma.
ATLAS-H-tautau

Les données rassemblées par l’expérience ATLAS (les points noirs) sont en accord avec la somme de tous les évènements venant du bruit de fond (histogrammes en couleur) en plus des contributions venant d’un boson de Higgs se désintégrant en une paire de taus (la ligne rouge). En dessous, le bruit de fond est soustrait des données pour révéler la masse la plus probable du boson de Higgs, à savoir 125 GeV (la courbe rouge).

CMS commence aussi à voir des désintégrations en paires de quarks b avec un signal de 2.0 sigma. Bien que ceci ne soit toujours pas très significatif, c’est la première indication pour cette désintégration jusqu’ici au Grand collisionneur de hadrons (LHC). Les expériences du Tevatron avaient rapporté l’observation de telles désintégrations à 2.8 sigma. Bien que le boson de Higgs se désintègre en quarks b environ 60 % du temps, il y a tant de bruit de fond qu’il est extrêmement difficile de mesurer ces désintégrations au LHC.

Non seulement les expériences ont la preuve que le boson de Higgs se désintègre en paires de taus, mais elles mesurent aussi combien de fois ceci arrive. Le Modèle Standard, la théorie qui décrit à peu près tout ce qui a été observé jusqu’à maintenant en physique des particules, stipule qu’un boson de Higgs devrait se désintégrer en une paire de taus environ 8 % du temps. CMS a mesuré une valeur correspondant à 0.87 ± 0.29 fois ce taux, c’est-à-dire une valeur compatible avec 1.0 comme prévu pour le boson de Higgs du Modèle Standard. ATLAS obtient 1.4 +0.5-0.4, ce qui est aussi consistent avec la valeur de 1.0 à l‘intérieur des marges d’erreur.

CMS-Htautau1

Un des événements captés par la collaboration CMS ayant les caractéristiques attendues pour les désintégrations du boson de Higgs du Modèle Standard en une paire de taus. Un des taus se désintègre en un muon (ligne rouge) et en neutrinos (non visibles dans le détecteur), tandis que l’autre tau se désintègre en  hadrons (particules composées de quarks) (tours bleues) et un neutrino. Il y a aussi deux jets de particules vers l’avant (tours vertes).

Avec ces nouveaux résultats, les expériences ont établi une propriété de plus prédite pour le boson de Higgs du Modèle Standard. Reste encore à clarifier le type exact de boson de Higgs que nous avons. Est-ce bien le plus simple des bosons, celui associé au Modèle Standard? Ou avons nous découvert un autre type de boson de Higgs, le plus léger des cinq bosons de Higgs prévus par une autre théorie appelée la supersymétrie.

Il est encore trop tôt pour écarter cette deuxième hypothèse. Tandis que le boson de Higgs se comporte jusqu’ici exactement comme ce à quoi on s’attend pour le boson de Higgs du Modèle Standard, les mesures manquent encore de précision pour exclure qu’il soit de type supersymétrique. Une réponse définitive exige plus de données. Ceci arrivera une fois que le LHC reprendra du service à presque deux fois l’énergie actuelle en 2015 après l’arrêt actuel pour maintenance et consolidation.

En attendant, ces nouveaux résultats seront affinés et finalisés. Déjà ils représentent un petit pas pour les expériences et un bond de géant pour le boson de Higgs.

Pour tous les détails (en anglais seulement)

Présentation donnée par la collaboration ATLAS le 28 novembre 2013

Présentation donnée par la collaboration CMS le 3 décembre 2013

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution.

Share

Jacques Martino, Directeur de l’Institut national de physique nucléaire et des particules du CNRS, adresse ses félicitations à François Englert et Peter Higgs pour le Prix Nobel de physique 2013, et rappelle la contribution en France du CNRS à la découverte du fameux boson.

Enthousiasme général des physiciens et ingénieurs des expériences Atlas et CMS lors de l'annonce du Prix Nobel de Physique 2013. © CERN

Enthousiasme général des physiciens et ingénieurs des expériences Atlas et CMS lors de l’annonce du Prix Nobel de Physique 2013. © CERN


« Au nom du CNRS, je veux féliciter François Englert et Peter Higgs pour l’intuition extraordinaire dont ils ont fait preuve il y a presque 50 ans, en “inventant” le “boson de Higgs”. Le boson de Higgs a été théorisé dans les années 1960, notamment pour expliquer pourquoi certaines particules ont une masse alors que d’autres n’en ont pas. Il est alors devenu un véritable Graal pour nos physiciens. Il est en effet la clé de voûte du Modèle standard de la physique des particules, un ensemble théorique cohérent permettant de décrire le monde des particules subatomiques. Sans nul doute, la découverte d’un boson de Higgs vient donc de manière éclatante conforter ce modèle standard !

Il est indéniable que cette prédiction a animé des milliers de chercheurs durant toutes ces années, et je veux saluer aussi le travail titanesque accompli par les chercheurs,  ingénieurs et techniciens qui ont construit le LHC au CERN ainsi que les détecteurs Atlas et CMS. Ce prix Nobel célébré aujourd’hui, il nous appartient un peu aussi, car nos chercheurs français ont participé de manière très importante à cette grande quête collective qu’a été la traque du boson de Higgs.

Il aura fallu relever des défis technologiques colossaux qu’il s’agisse de l’accélérateur, des détecteurs ou bien encore des infrastructures de calcul permettant de traiter l’énorme quantité de données produites. Car rechercher le boson de Higgs revient véritablement à chercher une aiguille dans une botte de foin !

Plusieurs centaines de personnes du CNRS ont apporté leur pierre à la construction des  expériences du LHC et joué un rôle décisif dans l’exploitation scientifique des données. L’action déterminante du CNRS dans ce domaine serait sans aucun doute impossible sans l’expertise reconnue de l’IN2P3 qui fédère l’ensemble de ces activités et qui participe ainsi avec force au rayonnement national et international du CNRS. Ces recherches rappellent aussi de manière remarquable combien la collaboration internationale peut être porteuse de réussite.

Cette découverte majeure est le premier succès du LHC et vient ainsi couronner le succès de toute une communauté. Pour toute cette communauté, aujourd’hui est un jour de fête. Et pour le CNRS, cette découverte récompense 20 années d’investissements technologiques et humains dans lesquels une douzaine de laboratoires de CNRS, ont joué un rôle majeur aux côtés du CERN, ainsi que 200 chercheurs français.

La vie du LHC ne fait que commencer et cette réussite est certainement porteuse d’un avenir riche de nouvelles découvertes qui mobiliseront nos équipes dans les années qui viennent. Le Higgs a encore bien des secrets à nous livrer, nous l’avons pour l’instant seulement “aperçu”, et il convient de préciser sa nature et ses caractéristiques. Il s’agit là d’un énorme chantier à venir. Mais le programme de recherche du LHC dépasse largement ce cadre !  Le Modèle standard de la physique des particules s’il se voit conforté, laisse de nombreuses questions en suspens. Matière noire, supersymétrie… La recherche d’une nouvelle physique au-delà du Modèle standard va ainsi se poursuivre dans les années pour repousser toujours les frontières de notre compréhension de la matière et de l’Univers. »

À voir également :

Jacques Martino réagit à l’annonce du Prix Nobel de Physique 2013


François Englert et Peter W. Higgs, Prix Nobel… par CNRS

Comment chasse-t-on le boson ?


La chasse au boson de Higgs par CNRS

et pour tout savoir sur le LHC et le boson de Higgs (actus, BDs, vidéos): http://lhc-france.fr/higgs

Share


A l’occasion de l’ouverture de l’appel à candidature 2013 de “Sciences à l’Ecole” pour l’accueil d’enseignants français au CERN durant une semaine, nous publions ces jours-ci le journal quotidien plein d’humour de Jocelyn Etienne qui a suivi ce programme l’année dernière, au mois de novembre dernier.

 

Chambre à brouillard: la chasse aux particules commence !
Mardi 06 novembre 2012

Aujourd’hui, construction d’une chambre à brouillard, alors que le Soleil décide enfin à se montrer ! C’est l’écossais Wilson qui en a inventé le procédé en 1911 (avant de recevoir le Nobel en 1927) pour détecter la trajectoire des particules. Pour nous, de la carboglace, un peu d’isopropanol et de bricolage, et l’on voit des muons issus de particules cosmiques laisser une trace de leur passage.Oulala! (Vue en vidéo d’un muon grâce à la chambre à brouillard)
Mick Storr en pleine explication

On a beau être dans un des plus grands centre de recherche fondamentale du monde, rien de vaut un tableau noir et une craie (cette dernière difficile à trouver par ici parait-il).

 

Les conférences du jour :

David Rousseau (IN2P3 / LAL-Orsay) nous confirme la découverte presque peut-être sûre du boson de Higgs, en tout cas, si c’est pas lui, c’est quand même quelque chose. Il travaille sur le détecteur ATLAS, il doit savoir de quoi il parle. Il y a des détecteurs sur le LHC, comme ATLAS et CMS  et chacun est un monstre de technologie et de compétences, et tous deux confirment indépendamment la détection du Higgs (c’est comme ça qu’on dit).

Julien Lesgourgues (Ecole Polytechnique Fédérale de Lausanne) nous parle de la courbure de l’espace qui en fait est plat, à moins que ce ne soit l’inverse, mais j’arrive un quart d’heure en retard…

Sylvie Rosier-Lees du CNRS/IN2P3 au laboratoire d’Annecy, s’occupe du détecteur spatial AMS (spectromètre magnétique Alpha ndlr), accroché à l’ISS. AMS s’occupe des particules cosmiques, et il y en a qui viennent de très loin ! (ici: les dernières new d’AMS ndlr).

Crédit: Jocelyn Etienne.

A droite, la personne semblait coder un programme pour un traitement graphique de données, mais il basculait souvent sur son compte facebook… tsss tsss tsss… Pour les connaisseurs, son portable est sous Xubuntu.

Enfin, Corinne Berat du CNRS/IN2P3 au laboratoire de Grenoble a plus les pieds sur Terre. Son joujou se trouve en Argentine et détecte les rayons cosmiques (encore) qui arrivent au sol après avoir éclaboussé l’atmosphère d’une multitude de particules (des gerbes…). L’observatoire Pierre Auger recouvre quelque chose comme 3000 km² et se délecte des particules de haute énergie provenant peut être de collisions de galaxies ou de supernovae.

Après le repas du soir, je me rends à une conférence dans le cadre de « The 4th International Conference on Particle and Fundamental Physics in Space ». Aujourd’hui, William H. Gerstenmaier de la NASA qui nous présente in English, les recherches faites sur l’ISS. La vidéo finale (un film qui compile les plus belles vues de la Terre prises de la station) est absolument sublime.

 

 

Earth from Michael König – Même ceux qui ont bossé sur leur ordinateur (occupés à coder ou traiter les informations du LHC) toute la durée de la présentation sans écouter un mot du conférencier, stoppent leur activité pour regarder le film. on Vimeo.

A suivre…

Jocelyn Etienne est enseignant au lycée Feuillade de la ville de Lunel.

Pour soumettre sa candidature pour la prochaine session du stage au CERN, c’est par ici.


Share

Le 4 juillet, le CERN annonçait avoir «observé une nouvelle particule » et non « découvert le boson de Higgs. » Pourquoi faire preuve de tant de retenue? Simplement parce ce qu’il était trop tôt pour se prononcer. Le boson de Higgs est la dernière pièce manquante au Modèle Standard de la physique des particules, un modèle qui a permis aux théoriciennes et théoriciens de faire des prédictions d’une extrême précision. Mais qui voudrait compléter un casse-tête de 5000 morceaux en y insérant la mauvaise pièce?

Les expériences CMS et ATLAS ont déjà attaqué les questions suivantes:

1) Voit-on tous les modes de désintégration prédits par le Modèle Standard?

2) Est-ce que chacun se produit aussi souvent que prévu?

3) Quelles sont les propriétés fondamentales de ce nouveau boson?

Bien que les premières vérifications effectuées (basées sur la moitié des données disponibles aujourd’hui) indiquent que le nouveau boson aie tout l’air du Higgs, la précision actuelle est encore trop faible pour trancher comme le montre les graphes suivants. (signal strength et σ/σSM H représentent la même quantité).

Le boson de Higgs peut se désintégrer de plusieurs façons et le graphe montre les différents canaux observés ainsi que leur fréquence. Une « force de signal » (signal strength) de 1 implique que le signal correspond exactement à ce que prédit le modèle pour un boson de Higgs. Et zéro veut dire que ce canal de désintégration n’est pas observé. Les points en noir représentent les mesures faites et la barre horizontale, la marge d’erreur associée.

Comme on le voit bien, il est encore impossible de dire si les deux premiers canaux sont compatible avec 0 (non, ce canal n’est pas observé) ou 1 (oui, on le voit au taux prévu). ATLAS et CMS doivent analyser plus de données pour déterminer si ce boson se désintègre en deux quarks b (H → bb) et deux leptons tau (H → ττ). Les trois autres canaux sont bel et bien observés mais à des taux légèrement supérieurs à ceux prévus par le Modèle Standard.

Le test décisif viendra des mesures de son spin et de sa parité, deux « nombres quantiques » (ou particularités mesurables) attachés aux particules fondamentales. Le « spin » est semblable à la quantité de mouvement angulaire qu’on associe à un corps en rotation. Sauf que pour les particules fondamentales, cette quantité ne peut prendre que certaines valeurs bien précises. Pour les bosons, les particules associées aux champs de forces, la valeur doit être 0, ±1, ±2 etc. Pour les fermions, les grains de matière tels que les quarks et les leptons (électron, muon, tau and neutrinos), le spin est soit +½, soit -½.

Aidan Randle-Conde résume bien toutes les possibilités dans son blog (en anglais). Seule une particule de spin 0 ou 2 peut se désintégrer en deux photons. Puisqu’on a vu que le nouveau boson se désintègre en deux photons, il ne peut avoir qu’un spin 0 ou 2. De plus, un boson de spin 2 ne peut se désintégrer en deux taus. Il est donc crucial de mesurer si c’est le cas ou pas en utilisant toutes les données accumulées récemment.

(tiré du blog d’Aidan Randle-Conde)

Le Modèle Standard impose que le spin et la parité du boson de Higgs soit 0+. Reste donc à déterminer si le nouveau boson est de type 0+ ou encore 0, 2+ ou 2. Le seul moyen est de mesurer les angles auxquels les produits de désintégration s’échappent. Si on observe une désintégration en deux photons, on doit mesurer l’angle entre les photons et la direction des faisceaux du LHC. Lorsque le boson se brise en deux Z, chacun donnant  à son tour deux électrons ou deux muons, il faut mesurer les angles et la masse combinée des quatre particules finales.

Voici ce que Sara Bolognesi et ses collègues prédisent pour un boson de Higgs se désintégrant soit en ZZ, WW ou deux photons. En mesurant la masse et les angles des produits de désintégration, on pourra déterminer le spin et la parité du nouveau boson. Si leur distribution correspond aux courbes en rouge dans les diagrammes suivants, c’est qu’on a bel et bien trouvé le boson de Higgs. Si cela ressemble plutôt aux autres courbes, celles associées à d’autres modèles, c’est qu’il s’agit d’un autre type de boson.

Chaque expérience a maintenant en main 14 femtobarn inverse (fb-1) de données et on espère atteindre 25 fb-1 au total d’ici la fin de l’année. Avec les 5 fb-1 accumulés l’an dernier, ce devrait être suffisant pour arriver à démasquer le nouveau venu. Il ne reste « plus » qu’à mesurer toutes ces quantités assez complexes.

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

Pour plus d’info sur le spin du boson de Higgs, regardez ces deux récents vidéos sur CERN YouTube (première et seconde partie) (en anglais seulement)

Share

Suite aux récents résultats du LHC concernant le boson de Higgs , Jacques Martino, Directeur de l’Institut national de physique nucléaire et de physique des particules du CNRS, adresse ses félicitations aux personnels de l’Institut.

Depuis le CERN ou par webcast depuis les laboratoires, les personnels de l'Institut national de physique nucléaire et de physique des particules du CNRS ont été nombreux à suivre en direct le séminaire LHC du 4 juillet 2012. Image : CERN

« Nous avons vécu, mercredi dernier, avec l’annonce de la découverte d’un boson à très forte saveur Higgs, une “folle” journée où l’ensemble de l’Institut a été récompensé d’un effort de recherche qui s’est étalé sur une bonne vingtaine d’années, et qui je l’espère va continuer et nous apporter d’autres découvertes.
Je souhaite que tout l’Institut se sente félicité et honoré par cette découverte ; bien sûr tous ceux qui ont travaillé directement sur cette recherche, mais aussi tous ceux qui ont rendu possible la participation de l’IN2P3 à cette découverte : les chercheurs, mais aussi les ingénieurs, techniciens et administratifs impliqués sur ou autour d’Atlas, CMS, du LHC et ses accélérateurs, du centre de calcul… Mais aussi tous les agents, dans tous nos labos, qui ont contribué à rendre cet effort possible, et fructueux.
Je souhaite ici associer toutes les autres disciplines de l’Institut : nous sommes dans un même bateau, notre recherche est avant tout “subatomique”, et le résultat majeur obtenu aujourd’hui par la physique des particules doit et va tous nous “booster”.
Nous sommes tous heureux et fiers que l’IN2P3 y ait participé, et que notre organisation ait permis d’y apporter une contribution très significative. Faut-il ici rappeler que cette organisation en réseau est, entre autre, celle qui a permis de coordonner nos efforts ? C’est une plus-value significative sans laquelle ni le CNRS, ni les Universités n’auraient pu avoir une place si visible. C’est aussi notre organisation qui nous a permis une excellente coordination avec nos collègues de l’Irfu, que j’associe à ce message.

Les résultats dévoilés mercredi dernier constituent un moment historique de la physique des particules. L’IN2P3, grâce à ses chercheurs, ingénieurs, techniciens et administratifs, a su être présent dès le début et faire les choix pertinents lors de la conception, de la construction, des analyses tant dans Atlas que CMS, choix qui nous ont donné une position très visible et reconnue.
Nous sommes tous fiers que ces investissements humains et financiers aient permis à nos chercheurs de jouer un rôle leader dans la découverte du “Higgs”. Le LHC n’est clairement qu’au début de son histoire, et nous ne doutons pas que d’autres résultats de grande qualité sont encore à venir dans Atlas et CMS, mais aussi LHCb et Alice.
Je voudrais terminer en vous rapportant un mail de félicitations que j’ai reçu de la part d’un ami médecin : il nous remercie pour cette journée où l’IN2P3 lui a permis de rêver. Oui, en effet, le progrès des connaissances, dans chacune de nos disciplines, porte une part de rêve, d’enchantement qui sont aussi un fort soutien, voire un moteur, à nos actions. Et si en plus c’est partagé au-delà de notre discipline, je crois que notre raison d’être et de travailler en est confortée. Continuons à faire progresser les connaissances de notre domaine, et poursuivons les activités de recherches plus appliquées d’ores et déjà entreprises : ceci doit être notre double leitmotiv.
Je terminerai en vous rappelant que lors de notre conférence de presse, avec le CEA, à Paris, nous avons reçu un appel téléphonique de notre Ministre, Madame Fioraso, dont les mots de félicitations sont sur notre page Web IN2P3. S’il est aujourd’hui encore bien tôt pour en tirer quelques certitudes quant à nos budgets à venir, il va sans dire qu’un tel intérêt ne peut être lu que positivement.

Bravo encore et félicitations à tous. »

Share

Après les résultats spectaculaires annoncés hier au CERN sur la découverte d’un nouveau boson, la plus grande conférence en physique des particules de l’année a débuté aujourd’hui à Melbourne. Mais cette première présentation sera dure à battre.

Comme plusieurs personnes l’ont mentionné, il est encore tôt pour dire si ce boson est bien le boson de Higgs bien que toutes les chances soient de ce côté. Il faut d’abord établir s’il se comporte exactement comme le boson de Higgs du Modèle Standard. Se désintègre-t-il dans les proportions prescrites par la théorie? Il nous faut donc vérifier tout ça avec la plus grande précision possible, pas que nous soyons compulsifs mais la moindre petite variation pourrait révéler l’entrée du « passage secret ».

Des théoriciens comme Peter Higgs, François Englert et Robert Brout, ont permis cette avancée en postulant en 1964 l’existence du mécanisme de Higgs et du boson de Higgs. Encore aujourd’hui, ce sont souvent les théoriciennes et théoriciens qui nous orientent dans la bonne direction.

Tous et toutes s’entendent à dire que le modèle théorique actuel a ses limites. Le Modèle Standard serait à la physique des particules ce que les quatre opérations de base (addition, soustraction, multiplication et division) sont aux mathématiques. Bien qu’elles suffisent à accomplir la plupart des tâches quotidiennes, on doit à l’occasion faire appel à la géométrie ou au calcul différentiel.

Tout ça pour dire qu’il existe des signes indiquant que le Modèle Standard n’est que la première couche d’une théorie plus complexe. Plusieurs pensent que la couche supérieure est une théorie appelée supersymétrie ou SUSY.

Une des difficultés majeures de cette théorie, c’est qu’elle comporte une centaine de paramètres non définis, ce qui la rend incapable de faire des prédictions concrètes. Sauf si on fixe la valeur de plusieurs de ces paramètres. On a alors des modèles plus gérables, comme par exemple le CMSSM ou Constrained Minimal Supersymmetric Model.

Aujourd’hui, à la Conférence Internationale de Physiques des Hautes Énergies, plusieurs théoricien-ne-s ont discuté de l’impact sur ces modèles de savoir maintenant que la masse du Higgs est 126 GeV. Par exemple, Dmitri Kanikov a montré qu’on peut mettre à profit les différentes interconnections au sein de la théorie pour voir comment les plus récentes limites établies expérimentalement peuvent substantiellement contraindre les paramètres du CMSSM.

Nazila Mahmoudi a quant à elle pousser cette approche un peu plus loin en démontrant qu’on peut non seulement circonscrire les paramètres de modèles tels que ceux du CMSSM, mais aussi ceux de SUSY. Ceci l’a conduite avec ses collègues à réaliser que la toute nouvelle valeur de la masse du boson de Higgs permet déjà d’éliminer certains de ces modèles réduits.

L’axe vertical montre la valeur de la masse du boson de Higgs et les deux traits horizontaux, la marge d’erreur sur cette valeur. Tous les modèles qui tombent en dehors de cette marge comme le « minimal Gauge Mediated SUSY Breaking Model » et le « no-scale » (en gris et en rose sur le graphe) sont éliminés.

Elle s’est montrée très optimiste même si les recherches actuelles au LHC n’ont toujours pas révélé la présence de particules supersymétriques. Elle a démontré qu’en fait il reste encre bien des valeurs permises pour les paramètres de SUSY. Si on ne les a toujours pas observées, ce n’est pas parce qu’elles n’existent pas mais peut-être simplement parce qu’elle sont plus lourdes ou appartiennent à des configurations plus complexes, les rendant plus difficiles à débusquer. En éliminant un à un les modèles erronés, on progresse dans la bonne direction.

Rien de tel qu’une note d’optimisme pour clore cette première journée d’une conférence qui promet.

Pauline Gagnon

Pour être averti-e lors de la parution de nouveaux blogs, suivez-moi sur Twitter: @GagnonPauline ou par e-mail en ajoutant votre nom à cette liste de distribution

 

 

Share

Notre-Dame de Paris veillera-t-elle sur les conférenciers ? Poster : Bruno Mazoyer, LAL.


La vie des physiciens est ponctuée tout au long de l’année de rencontres au cours desquelles ils montrent, partagent et discutent leurs derniers résultats : les conférences. Quelques fois même, ils s’y chamaillent un peu. La semaine prochaine, la conférence internationale HCP2011 (pour Hadron Collider Physics) réunira la fine fleur de la physique des particules, où les tout derniers résultats du LHC et du Tevatron seront mis sur la table. Y aura-t-il des annonces très importantes ? Les rumeurs disent que non, mais sait-on jamais?

Pour l’organisateur d’une conférence, c’est précisément un casse-tête. En effet, l’importance des résultats présentés peut sans doute se mesurer au nombre des participants. Évidemment. Plus les résultats attendus sont marquants, et plus tout le monde « veut en être ». Seulement, lorsqu’on démarre l’organisation d’un tel événement, on n’en sait encore rien. Si donc assister à une conférence peut provoquer bien des plaisirs intellectuels, permettre de découvrir de nouveaux lieux et de nouvelles personnes, en organiser une, aussi… mais bien différemment !

De la feuille blanche, à l’accueil des participants avec l’espoir qu’ils repartiront satisfaits, la progression se fait naturellement avec son lot de surprises. Certaines sont cocasses, quand elles ne dissimulent pas des situations difficiles : “étudiants” africains demandant des visas pour échapper à leurs conditions, ou sud-américains demandant le remboursement intégral de leurs frais de déplacement, nombreuses sont donc les demandes étonnantes. Mais quand une se concrétise, comme celle de ce théoricien iranien de Meshed, qui souhaite réellement présenter ses résultats, et avec qui nous avons travaillé pour qu’il obtienne son visa et ses subventions locales, on réalise à quel point ces conférences conservent encore au moins partiellement leur rôle original. Saviez-vous que les physiciens des deux blocs ont poursuivis leur collaboration en physique des particules durant toute la durée de la guerre froide ?

Et puis passées ces surprises, il y a le creux. On a 50 inscrits, on en attendait entre 150 et 200, et plus personne ne frappe à la porte. Il va falloir faire des économies. On annule l’achat des stylos laser gravés au nom du laboratoire invitant, on réduit le nombre de petits fours en se disant qu’il y en a toujours trop. On se creuse la tête pour faire venir les collègues en conférence à une période généralement dédiée au travail de fond. Peu importe que trois mois plus tôt, lors d’une autre conférence, ils assuraient qu’ils viendraient à “notre” conférence pour assister en direct à la découverte de notre très chère particule (le boson de Higgs bien-sûr), car les données supplémentaires allaient confirmer dans doute aucun la puissance de Goliath. Mais depuis, plus de données ont coulé sous les ponts, et les premiers indices ont disparu comme par enchantement. Alors tout le monde trouve inutile cette conférence, et d’ailleurs ne faudrait-t-il pas tout simplement la supprimer ? Qu’on en discute, et qu’on en décide que diantre!

Entre-temps, on a proposé des posters, de nombreuses présentations pour chaque expérience alors peu à peu ça repart, le programme se met en place, et s’étoffe. Ça devrait aller, et on se demande quel sera le clou de la conférence. On espère que de nouveaux résultats soient présentés, mais on ne maîtrise pas la situation. On voudrait quand même mettre en place une conférence de presse – si par hasard une bonne surprise arrivait ? Mais non, il faudrait mieux trouver un compromis, va pour un compromis !

Ça avance cahin-caha, quelques personnes respectables acceptent l’invitation car elles savent que la science même quand elle est big ne se maîtrise pas entièrement, que les grandes découvertes se construisent par petits pas et que donc de tels rendez-vous sont tout à fait essentiels pour notre communauté.

Les choses s’enclenchent naturellement. Dans notre petit comité d’organisation, on continue à cogiter, et on se jure de comprendre les décisions politiques des grandes expériences, même si au fond 1) on ne les accepte pas et 2) on ferait la même chose si l’on était à leur place…

Et puis tout à coup on est 200 (enfin sur le papier car le “vrai” physicien ne s’inscrit pas avant que les délais ne soient dépassés). Alors on peut ouvrir les tarifs préférentiels pour les voisins qui préfèrent naturellement aller en conférence à l’étranger, et nous voilà 250. Il va falloir assurer. On rappelle les fournisseurs, les choses s’arrangent.

Tout semble en place, mais peut-être les résultats ne seront-ils pas assez neufs ? Et alors qu’on finalise les badges et les pochettes, un e-mail arrive. C’est une demande de “talk” supplémentaire, pour un nouveau résultat « surprenant ». Le correspondant est sérieux, c’est une grande collaboration, il ne ferait pas cette démarche si ce n’était pas « du solide », pas si tard (du moins c’est ce que l’on espère !). Il reste 15 minutes dans l’agenda. Banco, le ”talk” est à vous, envoyez nous le speaker (conférencier) avant que la conférence ne commence car on vous placera le premier jour !

On verra bien. Toujours est-il que lors de l’introduction nous n’annoncerons pas que l’heure du banquet et autres détails logistiques, mais aussi une présentation qui n’est pas sur le programme imprimé et placé dans les sacs confectionnés deux jours plus tôt. Car le résultat vient de sortir, et ce sera peut-être le highlight (temps fort) de la conférence.

À lundi !

– Gregorio Bernardi, organisateur de la conférence Hadron Collider Physics 2011 et chercheur au CNRS au Laboratoire de physique nucléaire et des hautes énergies (LPNHE, CNRS/IN2P3/Université Pierre et Marie Curie/ Université Paris Diderot)

Share

Le temps de la réflexion

Tuesday, October 25th, 2011

Notre domaine de physique vit une période de grande ébullition, riche et passionnante. L’attribution récente du prix Nobel de physique à nos collègues Perlmutter, Schmidt et Riess que je veux féliciter ici, est d’ailleurs pour moi le reflet de ce grand mouvement  de réflexion auquel est associé l’ensemble de notre communauté. Leur découverte il y a une douzaine d’années de l’accélération de l’expansion de l’Univers a proprement sidéré le monde de la cosmologie, et l’énergie noire qui pourrait expliquer cette évidence est devenue un nouveau graal pour les physiciens et pour notre Institut en particulier, qui participe depuis l’origine à ces travaux.

Au même moment, le monde entier porte son regard vers le LHC (Grand collisionneur de hadrons), le plus grand accélérateur de particules au monde, dans l’attente de nouvelles révélations sur les lois les plus intimes de la matière. Nos chercheurs sont ainsi engagés dans une chasse effrénée au boson de Higgs, ce chainon manquant du modèle standard de la physique des particules. Du côté de la physique nucléaire, le chantier du futur accélérateur linéaire Spiral2 démarre officiellement et offrira bientôt à notre communauté une infrastructure internationale de premier plan, permettant d’étudier plus en détail la structure du noyau atomique. L’étau se resserre également dans notre quête de la matière noire, tandis que de manière inattendue, les neutrinos viennent quant à eux jeter le trouble en mettant en doute certains fondements de nos théories.

Bien sûr, il est beaucoup trop tôt pour parler de découverte et le résultat de l’expérience Opera devra être reproduit ou mis en défaut. Le scepticisme quant à cette incompréhensible mesure de la vitesse des neutrinos est d’ailleurs parfaitement sain. Mais il est d’ores et déjà extraordinaire de constater la très grande mobilisation de notre communauté à étudier cette question, aussi bien d’un point de vue expérimental que théorique, dans un fabuleux effort de réflexion collective.

Ainsi, quelles que soient les surprises que nous réserve la Nature, les mois qui viennent seront sans nul doute décisifs pour notre recherche. C’est également pour cette raison qu’il est temps de rassembler notre communauté et de l’inviter à participer à une autre forme de réflexion collective, dans un exercice de prospective pour l’ensemble de nos disciplines. En cette période charnière où d’importantes réflexions stratégiques sont menées en Europe et dans le monde pour imaginer notre recherche de demain, il est important que nous nous rassemblions, chercheurs de l’IN2P3 et du CEA/Irfu pour prendre ensemble le temps de cette réflexion, qui devra permettre à la France de continuer d’être un partenaire majeur dans cette grande quête pour la connaissance dans laquelle nous sommes engagés.

— Jacques Martino, Directeur de l’Institut national de physique nucléaire et de physique des particules du CNRS

Les journées de prospective de l’IN2P3 et de l’Irfu se dérouleront à Giens, du 2 au 5 avril 2012. Les personnels des instituts peuvent participer aux groupes de travail : http://www.in2p3.fr/actualites/media/journees_prospective2012.pdf

Share